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Hostility detection in hierarchical structure of tweets written in multiple 
languages.

English Text
Abundance in amount , 

Many Pretrained Models avail.
(High Resource Language)

Hindi Text
Scarce in amount,

Few Pre-Trained Models
(Low Resource Language)

HASOC, 2021

MultiLingual Setup

Our prayers are with you Kangana 
Ranaut. Get well soon. You are the 
best Andh Bhakts are still 
supporting her Gandhi kaha se 
aate he ye log

Hierarchical Structure of Tweets Hostility Detection in texts

General structure of tweets and challenging multilingual conversational datasets
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Structure of Conversational Code-Mixed Tweets
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Problem Statement

Determine whether a given Code-Mixed 
text (i.e., post/comment/reply) is 
Non-Hate-Offensive (NONE) or Hate and 
Offensive (HOF). 

(NONE) Non-Hate-Offensive 

(HOF) Hate and Offensive 



Literature Review
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Architectural Diagram of the Proposed Model

Flattening of the hierarchical structure 
with appropriate concatenations

Embeddings of each components 
from pre-trained models

Projection of concatenated 
representations

Classification head
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Formulation of the Proposed Model

● If the input is only post, a two-layer Multi-layer Perceptron 
(𝑀𝐿𝑃) is used to obtain (ℎ𝐿).

● For the comment, ([ℎ
c
 ;ℎ𝑝 ]) are concatenated and ℎ𝐿  is 

obtained.

● For reply, ([ℎ𝑐 ;ℎ𝑝 ]) are concatenated where ℎ𝑐 is 
representation of rcontext. This is passed through MLP layer 
to obtain (ℎ𝐿1). ([ℎ𝑟;ℎ𝐿1]) is concatenated and passed 
through another MLP layer to obtain (ℎ𝐿2). 

● Logits are obtained (ℎ𝑠 ) by passing the representations 
through a softmax layer (SL)

Process

● If post has only one reply then the Rcontext for the reply is 
parent comment only.

● If post has 𝑘 replies then the Rcontext for 𝑡 𝑡ℎ reply is 
concatenation of comment and 1 to (𝑡 − 1) 𝑡ℎ replies. 

Creation of Rcontext for replies 
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Baselines

Code-Mixed XLMR

Simple concatenation  baseline (SCB)



14

Baselines

Weighted context baseline (WCB)
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Baselines

Cosine Attention Baseline(CAB)



Dataset and Evaluation Metrics

Accuracy
The number of correct predictions in all the predictions.

F1 Score
The harmonic mean of precision and recall.
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Proposed model outperforms all baselines 

Accuracy and F1 scores for baselines and proposed model. Symbol ’-’ indicates that the results are not 
available. CM-XLMR = Code-Mixed XLM-R, RF = Random Forest, LR = Logistic Regression, XGB = 
XG-Boost, VC = Voting Classifier, Direct FT = Direct Fine-Tuning
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Visualization of proposed model’s attention while predicting labels 
using LIME Analysis

LIME Analysis, *GT = Ground Truth, P = POST, C = COMMENT, R = REPLY
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Attention distribution in a instance
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All the components and layers in the proposed architecture is 
important for classification

Setups 1, 2, 3 is created by removing a linear layer at a time and 4 is created by 
removing 1, 2 together. Similarly Setups 5, 6 are created by removing context and 
post and Setup 7 is created by removing both post and context.
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Some natural extension of the proposed model would be

Hindi-English Conversational 
CodeMixed Dataset

Hierarchical Modelling Approach

Hostility Detection

Multiple other 
languages

Other  Social 
media Platforms

User Level Analysis

● The paper presented a novel hierarchical neural network architecture for detecting hate and offensive content in 
Hindi-English Code-Mixed conversations. 

● It exploits the inherent hierarchy of the online social media conversational threads  and provides selective and 
abstractive context for a given utterance to boost the model performance. 
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Any questions ?
Reach us at:

◉ cs21mtech14007@iith.ac.in
◉ cs21mtech16001@iith.ac.in

Or raise an issue at:

https://github.com/AditiBagora/Hasoc2021CodeMix

Thanks!
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