

Hostility Detection in Online Hindi-English Code-Mixed Conversations

14th ACM Web Science Conference (ACM WebSci'22)

26-29, June, 2022

Barcelona, Spain

Authors

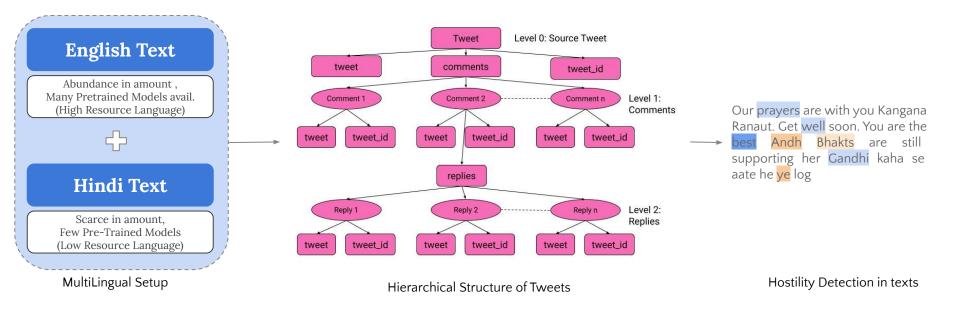
Aditi Bagora , Kamal Shrestha, Kaushal Maurya Maunendra Sankar Desarkar

Indian Institute of Technology Hyderabad (IITH), Hyderabad, India

Introduction

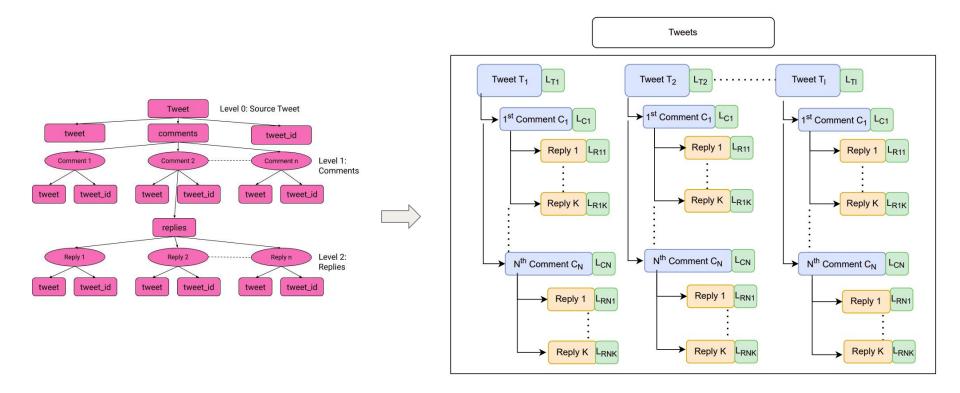
Problem Statement

Proposed Model


Experimental Setup

Results and Analysis

Conclusions


Hostility detection in hierarchical structure of tweets written in multiple languages.

General structure of tweets and challenging multilingual conversational datasets

Structure of Conversational Code-Mixed Tweets

Problem Statement

Proposed Model

Experimental Setup

Results and Analysis

Conclusions

Problem Statement

Determine whether a given Code-Mixed text (i.e., post/comment/reply) is Non-Hate-Offensive (NONE) or Hate and Offensive (HOF).

(NONE) Non-Hate-Offensive

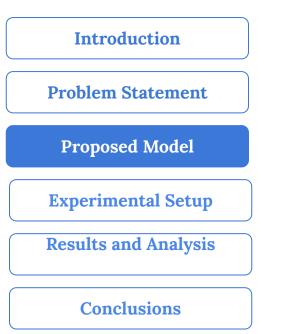
(HOF) Hate and Offensive

All the muslim countries who accepted Israel's identity may your rotten ass burn in eternal fire with Israel	Hate and Offensive
2:30 AM.May 11,2021.Twitter for Android	
4 Retweets 18 Likes	
0 11 0 %	
May 11 Not offensive on supports the part is offensive here hate speech as	ent tweet which ce classified as
Amine Hate and Offensive	$\langle \square$
May 11	
Replying to and	
AMEEEEEEEEEEEN Hate and Offensive	$\langle \Box$

Literature Review

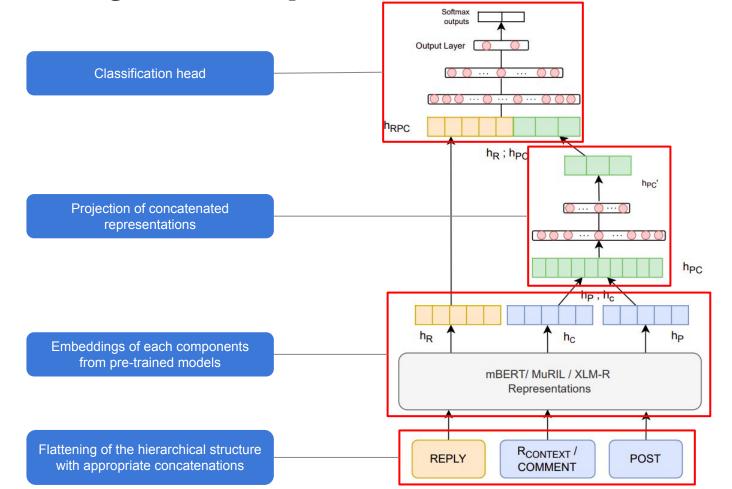
Battling Hateful Content in Indic Languages HASOC '21

Aditya Kadam^{*a*}, Anmol Goel^{*a*}, Jivitesh Jain^{*a*}, Jushaan Singh Kalra^{*b*}, Mallika Subramanian^{*a*}, Manvith Reddy^{*a*}, Prashant Kodali^{*a*}, T.H. Arjun^{*a*}, Manish Shrivastava^{*a*} and Ponnurangam Kumaraguru^{*a*}


^aInternational Institute of Information Technology, Hyderabad, India ^bDelhi Technological University, Delhi, India

Exploring Transformer Based Models to Identify Hate Speech and Offensive Content in English and Indo-Aryan Languages

Somnath Banerjee^{*a*}, Maulindu Sarkar^{*b*}, Nancy Agrawal^{*b*}, Punyajoy Saha^{*a*} and Mithun Das^{*a*}


^aDepartment of Computer Science and Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India ^bDepartment of Electrical Engineering, Indian Institute of Technology, Kharagpur, West Bengal, India

Architectural Diagram of the Proposed Model

Formulation of the Proposed Model

Processing for POST/COMMENT/R_{CONTEXT}/REPLY POST(P)

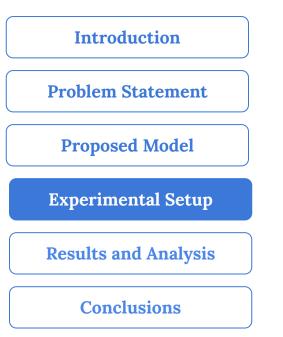
- Step 1: $h_p = PT(P)$
- Step 2: $h_L = MLP(h_p)$
- Step 3: $h_S = SL(h_L)$

R_{CONTEXT}/COMMENT(C)

- Step 1: $h_p = PT(P)$, $h_c = PT(C)$
- Step 2: $h_{pc} = h_p; h_c$
- Step 3: $h_L = MLP(h_{p_c})$
- Step 4: $h_S = SL(h_L)$

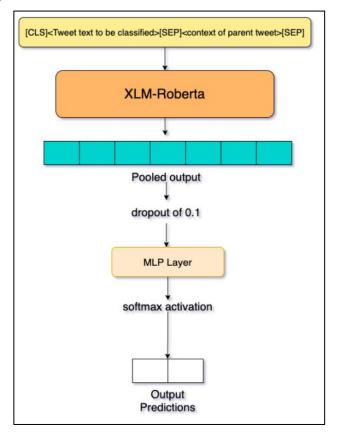
REPLY(R)

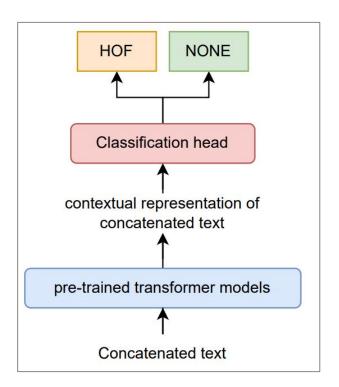
- Step 1: $h_p = PT(P), h_c = PT(C), h_r = PT(R)$
- Step 2: $h_{pc} = h_p; h_c$
- Step 3: $h_{L1} = MLP(h_{p_c})$
- Step 4: $h_{rpc} = h_r; h_{L_1}$
- Step 5: $h_{L2} = MLP'(h_{r_{p_c}})$
- Step 6: $h_S = SL(h_{L_2})$


Creation of Rcontext for replies

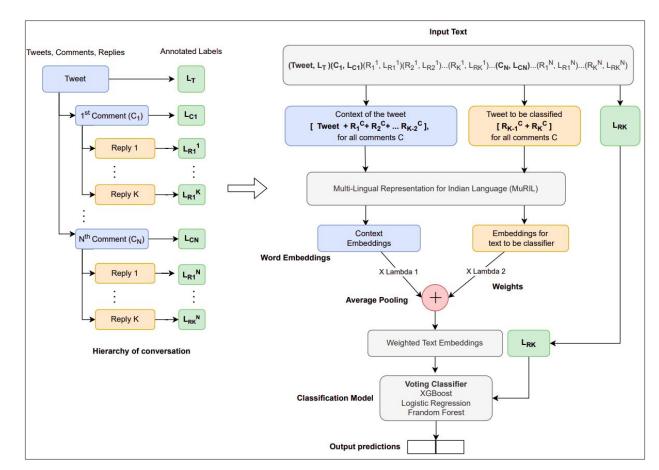
- If post has only one reply then the Rcontext for the reply is parent comment only.
- If post has k replies then the Rcontext for t th reply is concatenation of comment and 1 to (t 1) th replies.

Process


- If the input is only post, a two-layer Multi-layer Perceptron (*MLP*) is used to obtain (\hbar_L).
- For the comment, $([h_c;h_p])$ are concatenated and hL is obtained.
- For reply, ([*hc* ;*hp*]) are concatenated where *hc* is representation of rcontext. This is passed through MLP layer to obtain (*hL*1). ([*hr*;*hL*1]) is concatenated and passed through another MLP layer to obtain (*hL*2).
- Logits are obtained (*hs*) by passing the representations through a softmax layer (SL)



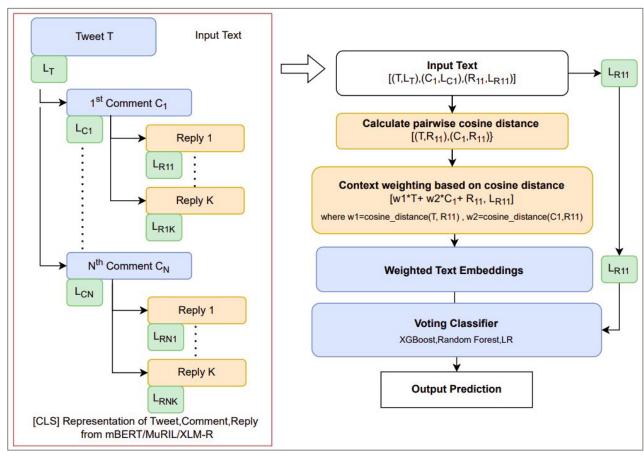
Baselines



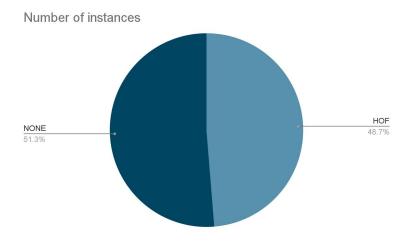
Simple concatenation baseline (SCB)

Code-Mixed XLMR

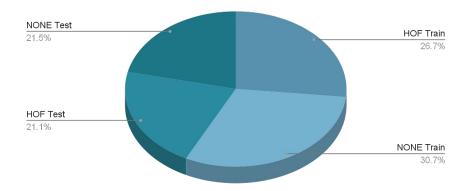
Baselines



Weighted context baseline (WCB)



Baselines



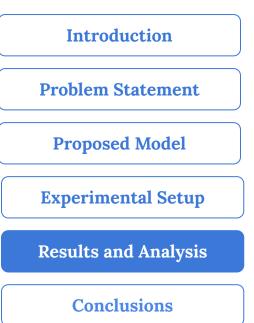
Dataset and Evaluation Metrics

Training and Testing Instances

Accuracy

The number of correct predictions in all the predictions.

 $Accuracy = \frac{\text{Number of correct Prediction}}{\text{Total number of predictions}}$


F1 Score

The harmonic mean of precision and recall.

 $F_1Score = \frac{2 * \text{Precision} * \text{Recall}}{\text{Precision} + \text{Recall}}$

Dataset	#C	#E	HOF	NONE
Train set	37	2819	1309 (46%)	1510 (54%)
Test set	25	2092	1037 (50%)	1055 (50%)
Total	62	4911	2346 (48%)	2565 (52%)

Proposed model outperforms all baselines

Model	Method	Accuracy					F1 Score				
		RF	LR	XGB	VC	Direct FT	RF	LR	XGB	VC	Direct FT
CM-XLMR	XLM-R + Norm	- 1	-	-	-	0.61	-	-	-	-	0.46
	mBERT	0.55	0.61	0.49	0.57	0.56	0.55	0.60	0.57	0.49	0.50
SCB	MuRIL	0.50	0.40	0.45	0.46	0.57	0.50	0.29	0.45	0.45	0.51
	XLM-R	0.55	0.58	0.52	0.58	0.40	0.54	0.49	0.50	0.53	0.27
8	mBERT	0.62	0.59	0.61	0.62	0.66	0.61	0.57	0.60	0.61	0.64
WBC	MuRIL	0.59	0.41	0.54	0.53	0.40	0.55	0.29	0.52	0.53	0.29
	XLM-R	0.64	0.64	0.59	0.64	0.66	0.60	0.62	0.57	0.61	0.65
	mBERT	0.64	0.55	0.60	0.62	0.66	0.58	0.57	0.54	0.58	0.61
SLCB	MuRIL	0.64	0.60	0.55	0.62	0.62	0.57	0.56	0.54	0.57	0.55
	XLM-R	0.64	0.62	0.61	0.65	0.40	0.62	0.60	0.59	0.63	0.27
САВ	mBERT	0.57	0.58	0.55	0.58	0.58	0.57	0.58	0.55	0.58	0.53
	MuRIL	0.60	0.59	0.61	0.65	0.58	0.60	0.58	0.61	0.64	0.54
	XLM-R	0.62	0.64	0.59	0.64	0.63	0.61	0.64	0.59	0.64	0.60
Hierarchial	mBERT	0.54	0.58	0.60	0.62	0.60	0.52	0.54	0.56	0.62	0.65
	MuRIL	0.59	0.63	0.62	0.64	0.63	0.55	0.61	0.60	0.64	0.67
	XLM-R	0.63	0.61	0.64	0.66	0.68	0.62	0.60	0.62	0.63	0.72

Accuracy and F1 scores for baselines and proposed model. Symbol '-' indicates that the results are not available. CM-XLMR = Code-Mixed XLM-R, RF = Random Forest, LR = Logistic Regression, XGB = XG-Boost, VC = Voting Classifier, Direct FT = Direct Fine-Tuning

Visualization of proposed model's attention while predicting labels using LIME Analysis

Exp.	GT	Predictions Type		Texts with highlighted words				
1	NONE	NONE 0.54 HOF 0.46	Р	Ok but liberals are not 'anti-Hindu'				
2	NONE	NONE 0.51 HOF 0.49	P+C	<mark>Ok but</mark> liberals are <mark>not</mark> ' <mark>anti</mark> -Hindu' You're <mark>anti</mark> -Hindu <mark>and</mark> non-liberal. Evidence maang <mark>lo</mark> bas, flood hon jaayega.				
3	NONE	NONE 0.56 HOF 0.44	P+C+R	Ok but liberals are not 'anti-Hindu' You're anti-Hindu and non-liberal. Evidence maang lo bas, flood hon jaayega. Flood it				
4	NONE	NONE 0.62 HOF 0.38	Р	Our prayers are with you KanganaRanaut . Get well soon . You are the best				
5	HOF	NONE 0.50 HOF 0.50	P+C	Our prayers are with you KanganaRanaut . Get well soon .You are the best Andh Bhakts are still supporting her. Gadhi 🤣				
6	HOF	NONE 0.16 HOF 0.84	P+C+R	Our prayers are with you KanganaRanaut . Get well soon .You are the <mark>best Andh Bhakts</mark> are still supporting her. Gadhi 🤣 <mark>kah</mark> a <mark>s</mark> e aate he <mark>y</mark> e log				
7	NONE	NONE 0.26 HOF 0.74	Р	Religious conversion has <mark>become</mark> the biggest national <mark>challenge</mark> in India after terrorism. आपदा_में_धर्मपरिवर्तन_का_खे <mark>ल</mark>				
8	NONE	NONE 0.25 HOF 0.75	P+C	Religious conversion has become the biggest national challenge in India after terrorism. आपदा_में_धर्मपरिवर्तन_का_खे <mark>ल If</mark> someone change his religion by his choose <mark>then</mark> what is your problem?				
9	NONE	NONE 0.25 HOF 0.75	P+C+R	Religious conversion has become the biggest national <mark>challenge</mark> in India after <mark>terrorism</mark> . आपदा_में धर ्मपरिवर्तन_का_खेल If someone change his <mark>religion</mark> by his choose then what is your problem? Appne dekhona bhai, kyu khujli horahi he?				

LIME Analysis, *GT = Ground Truth, P = POST, C = COMMENT, R = REPLY

colta shiftelt viver

Attention distribution in a instance

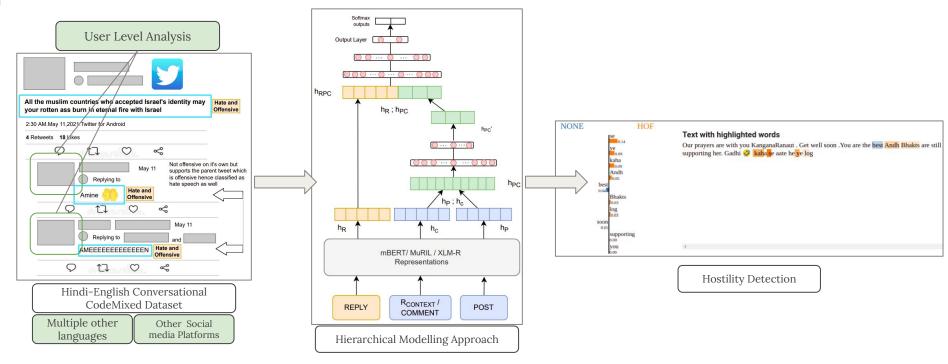
All the components and layers in the proposed architecture is important for classification

Abalation Type	Setup	Accuracy	F ₁ Score 0.716	
No removal	Hierarchical	0.679		
	Setup 1	0.522	0.511	
Component Removal	Setup 2	0.524	0.408	
	Setup 3	0.521	0.511	
	Setup 4	0.518	0.510	
	Setup 5	0.519	0.506	
Context Removal	Setup 6	0.519	0.509	
	Setup 7	0.512	0.393	

Setups 1, 2, 3 is created by removing a linear layer at a time and 4 is created by removing 1, 2 together. Similarly Setups 5, 6 are created by removing context and post and Setup 7 is created by removing both post and context.

Problem Statement

Proposed Model


Experimental Setup

Results and Analysis

Conclusions

Some natural extension of the proposed model would be

- The paper presented a **novel hierarchical neural network architecture** for detecting hate and offensive content in Hindi-English Code-Mixed conversations.
- It exploits the inherent hierarchy of the online social media conversational threads and provides selective and abstractive context for a given utterance to boost the model performance.

References

- 1. Somnath Banerjee, Maulindu Sarkar, Nancy Agrawal, Punyajoy Saha, and Mithun Das. 2021. Exploring Transformer Based Models to Identify Hate Speech and Offensive Content in English and Indo-Aryan Languages.
- 2. Mohit Bhardwaj, Md. Shad Akhtar, Asif Ekbal, Amitava Das, and Tanmoy Chakraborty. 2020. Hostility Detection Dataset in Hindi.
- 3. Arkadipta De, Venkatesh Elangovan, Kaushal Kumar Maurya, and Maunendra Sankar Desarkar. 2021. Coarse and fine-grained hostility detection in Hindi posts using fine tuned multilingual embeddings
- 4. Chander Shekhar, Bhavya Bagla, Kaushal Kumar Maurya, and Maunendra Sankar Desarkar. 2021. Walk in Wild: An Ensemble Approach for Hostility Detection in Hindi Posts.
- 5. Abhishek Velankar, Hrushikesh Patil, Amol Gore, Shubham Salunke, and Raviraj Joshi. 2021. Hate and Offensive Speech Detection in Hindi and Marathi.
- 6. Marzieh Mozafari, Reza Farahbakhsh, and Noel Crespi. 2019. A BERT-based transfer learning approach for hate speech detection in online social media.

Reach us at:

- cs21mtech14007@iith.ac.in
- cs21mtech16001@iith.ac.in

Or raise an issue at:

https://github.com/AditiBagora/Hasoc2021CodeMix