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IE&I

Hostility detection in hierarchical structure of tweets written in multiple
languages.

________________________

. Y Level 0: Source Tweet
English Text

1
1
1
:
[ Abundance in amount , } :
1
1
1
1
1
1
1

Many Pretrained Models avail.
(High Resource Language)

————————————— Level 1:
Comments Our prayers are with you Kangana

Ranaut. Get well soon. You are the

— P8 Andh Bhakts are still
supporting her Gandhi kaha se
aate he ye log

Hindi Text

- Repyr >  ( Reply2 - Level 2:
Scarce in amount,
Few Pre-Trained Models

Replies

(Low Resource Language)

MultiLingual Setup Hostility Detection in texts

Hierarchical Structure of Tweets

General structure of tweets and challenging multilingual conversational datasets
HASOC, 2021
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I Structure of Conversational Code-Mixed Tweets

[ Tweets ]
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I Problem Statement

Determine whether a given Code-Mixed
text (i.e., post/comment/reply) is
Non-Hate-Offensive (NONE) or Hate and
Offensive (HOF).

(NONE) Non-Hate-Offensive

E—
omm= b4

All the muslim countries who accepted Israel's identity may | Hate and |
your rotten ass burn in eternal fire with Israel Offensive \

2:30 AM.May 11,2021.Twitter for Android

4 Retweets 18 Likes

Not offensive on it's own but
I—I May 11 supports the parent tweet which
O Replying to is offensive hence classified as

®)

hate speech as well

: [Hate and |
Amine Offensive |

u Y <3

)

| | | | May 11

@ resvos o [N o

AMEEEEEEEEEEEEEN || Hate and <:l
Offensive

u o <3
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I Architectural Diagram of the Proposed Model

Softmax
i [ 1]

Classification head

Projection of concatenated

Output Layer
QO -0 .. OO0
[OOOWO-l"OmOOO]I
eee LTI T T

hR;

\ hpc'

Q.- O---O)

representations

Embeddings of each components

PO - ® -0 06

T
LLLLLELL LT tee
/’ k\

L= 1P

HNNEENENEEEEE

[ |
he hp

from pre-trained models

Flattening of the hierarchical structure

mBERT/ MuRIL / XLM-R

Representations

|

with appropriate concatenations

‘ REPLY l {

Rcontext/
COMMENT oSt

10



I Formulation of the Proposed Model

Processing for POST/COMMENT/RconTEXT/REPLY
rosT(P)

e Step 1: hy = PT(P)

® Step 2: h, = MLP(hp)

e Step 3: hg = SL(hr)
Rcontext/COMMENT(C)

e Step 1: hp=PT(P), he = PT(C)

e Step 2: hpc = hphe

e Step 3: hy = MLP(hy,)

e Step 4: hg = SL(hy)
REPLY(R)

e Step 1: hy = PT(P), hc = PT(C), h, = PT(R)

e Step 2: hye =hpsh,

e Step 3: hy 1 = MLP(hp,)

e Step 4: hrpe = hr; hy,

e Step 5: hy2 = MLP’(h;, )

e Step 6: hg = SL(hy,)

Creation of Rcontext for replies

e If post has only one reply then the Rcontext for the reply is
parent comment only.

e If post has k replies then the Rcontext for z th reply is
concatenation of comment and 1to (z - 1) th replies.

Process

e Ifthe inputis only post, a two-layer Multi-layer Perceptron
(MLP) is used to obtain (h,).

e  Forthe comment, ([h_:h 1) are concatenated and AL is
obtained.

e Forreply, ([hc ;hp]) are concatenated where he is
representation of rcontext. This is passed through MLP layer
to obtain (kL1). ([ar;RL1]) is concatenated and passed
through another MLP layer to obtain (hL2).

e Logits are obtained (hs ) by passing the representations

through a softmax layer (SL)
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I Baselines

[ [CLS}<Tweet text to be classified>[SEP]<context of parent tweet>[SEP] ]

HOF NONE

[ XLM-Roberta ] T_J

Pooled output T
l contextual representation of

dropout of 0.1 concatenated text

l
MLP Layer ‘ T

[ pre-trained transformer models ]

softmax activation T

Concatenated text

Quiput Simple concatenation baseline (SCB)
Predictions

Code-Mixed XLMR 13
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I Baselines

Input Text
Tweets, Comments, Replies Annotated Labels
) (Tweet, Lt)(Cy, Leq)(Rq", Lr1 )Rz, Lrz")--(Rk", Lrk!)-(Cns Len)-(ReN, Lrq™)-. (R, Lrkc™)
=R

[ Tweet + R C+ R,C+ ... R ,C1, [Rk4® +RgC1 LRk
for all comments C for all comments C

A l
‘ Multi-Lingual Representation for Indian Language (MuRIL) ’

|

Context of the tweet " Tweet to be classified

[ Context ] ‘ Embeddings for
Embeddings text to be classifier
Word Embeddings g
X Lambda 1 X Lambda 2
Weights

Average Pooling

Weighted Text Embeddings [ Lrk %7
Hierarchy of conversation \ y

Voting Classifier
XGBoost
Logistic Regression
Frandom Forest

Output predictions ,:j
Weighted context baseline (WCB) 14

Classification Model




I Baselines

—— Y

‘ Tweet T } Input Text
L; ‘ :> Input Text L
L [(TL1)(C1.Lc1)(Reg,Lr11)] R’
I—){ 15! Comment C; J ¢
| — ( Calculate pairwise cosine distance )
Lc ‘
L ) —ﬁ Reply 1 t [(TR11).(C1,R11)}
: { Lrit | - " ¢ %
—
VE— Context weighting based on cosine distance
L > Reply K [W1*T+w2*Cq+ Rqq, Lre4]
L—\' = where wi=cosine_distance(T, R11) , w2=cosine_distance(C1,R11)
: ’ Lr1k 9 Y,
: S— ¥
) \ 4
th (
_’| N™ Comment Cy ] Weighted Text Embeddings LR
Len f 3 l
> Repyt ‘
—— Voting Classifier
Lrnt | © XGBoost,Random Forest LR
—ﬂi Reply K \ +
( ' Output Prediction
Lrnk
[CLS] Representation of Tweet;Comment,Reply
from mBERT/MuRIL/XLM-R
Cosine Attention Baseline(CAB)
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I Dataset and Evaluation Metrics

Number of instances

Dataset | #C | #E | HOF | NONE

Train set | 37 | 2819 | 1309 (46%) | 1510 (54%)
Test set | 25 | 2092 | 1037 (50%) | 1055 (50%)

Total | 62 | 4911 | 2346 (48%) | 2565 (52%)

Training and Testing Instances

NONE Test
21.5%

HOF Train

26.7%

HOF Test

21.1%

NONE Train
30.7%

Accuracy
The number of correct predictions in all the predictions.

Number of correct Prediction

Accuracy =
Y Total number of predictions

F1 Score
The harmonic mean of precision and recall.

2 % Precision * Recall

FyS =
Locore Precision + Recall
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I Proposed model outperforms all baselines

Model Method Accuracy — F1 Score —
RF | LR | XGB | VC FT RF | LR | XGB | VC FT
CM-XLMR | XLM-R + Norm - - - - 0.61 - - - - 0.46
mBERT 0.55 | 0.61 | 049 | 0.57 0.56 055 | 0.60 | 0.57 | 0.49 0.50
SCB MuRIL 0.50 | 0.40 | 0.45 | 0.46 0.57 0.50 | 0.29 | 0.45 | 0.45 0.51
XLM-R 0.55 | 0.58 | 052 | 0.58 0.40 054 | 049 | 0.50 | 0.53 0.27
mBERT 0.62 | 0.59 | 0.61 | 0.62 0.66 0.61 | 057 | 0.60 | 0.61 0.64
WBC MuRIL 059 | 041 | 054 | 0.53 0.40 055 | 0.29 | 0.52 | 0.53 0.29
XLM-R 0.64 | 0.64 | 059 | 0.64 0.66 0.60 | 0.62 | 0.57 | 0.61 0.65
mBERT 0.64 | 0.55 | 0.60 | 0.62 0.66 058 | 0.57 | 0.54 | 0.58 0.61
SLCB MuRIL 0.64 | 0.60 | 0.55 | 0.62 0.62 0.57 | 0.56 | 0.54 | 0.57 0.55
XLM-R 0.64 | 0.62 | 0.61 | 0.65 0.40 0.62 | 0.60 | 0.59 | 0.63 0.27
mBERT 0.57 | 0.58 | 0.55 | 0.58 0.58 0.57 | 058 | 0.55 | 0.58 0.53
CAB MuRIL 0.60 | 0.59 | 0.61 | 0.65 0.58 0.60 | 0.58 | 0.61 | 0.64 0.54
XLM-R 0.62 | 0.64 | 059 | 0.64 0.63 0.61 | 064 | 0.59 | 0.64 0.60
mBERT 0.54 | 0.58 | 0.60 | 0.62 0.60 052 | 054 | 0.56 | 0.62 0.65
Hierarchial MuRIL 0.59 | 0.63 | 0.62 | 0.64 0.63 0.55 | 0.61 | 0.60 | 0.64 0.67
XLM-R 0.63 | 0.61 | 0.64 | 0.66 | 0.68 0.62 | 0.60 | 0.62 | 0.63 | 0.72

K

Accuracy and F1 scores for baselines and proposed model. Symbol -’ indicates that the results are not
available. CM-XLMR = Code-Mixed XLM-R, RF = Random Forest, LR = Logistic Regression, XGB =
XG-Boost, VC = Voting Classifier, Direct FT = Direct Fine-Tuning
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o

Visualization of proposed model’s attention while predicting labels
using LIME Analysis

Exp. | GT | Predictions | Type | Texts with highlighted words
NONE = ¢ ’
1| NONE | "Cu EEost] p | bk R are not ‘anti-BENENY .
2 NONE Nz:l; P+C B Bt liberals are fi6i ‘8fffi-Hindu’ .. You're §fifi-Hindu lilll non-liberal. Evidence maang I8 B&8, flood hon jaayegd.
3 NONE Nzgi P+C+R | IR bi liberals are fi8i ‘anti-Hindu’ .. You're anti-Hindu and non-liberal. Evidence fildang lo B&§, flood hon jaayega. Flood i.
NONE .
4 NONE HOR P Our prayers are with you KanganaRanaut . Get well soon .You are the [JE8l
5 HOF NONE P+C Our prayers are with you KanganaRanaut . Get well soon .You are the &St Bfi@l Bhakts are still
HOFE * supporting her. Gadhi ¢2
NONE Our prayers are with you KanganaRanaut . Get well soon .You are the best Andh Bhakts are still
6 HOF nor [ o84 P+C+R supporting her. Gadhi ¢ kahalSe aate helye log

i NONE Nggi = P Religiois conversion has become the biggest national challenge in India after terrorism. SiERISEERTRa_oT_G§

Religious conversion has become the biggest national challenge in India after terrorism. SfTU<T AR Rac_a_a I
someone change his religion by his choose then what is your problem?

NONE
8 |NONE | " - s | P+C

9 NONE NONE P+C+R Religious conversion has become the biggest national challenge in India after {eftorism. m_ﬁ.a:mﬁaﬁw_w_@a If
Hor [N 0.15 someone change his religion by his choose then what is your problem? Appne dekhona bhai, kyu khujli horahi he?

LIME Analysis, *GT = Ground Truth, P = POST, C = COMMENT, R = REPLY 19



I Attention distribution in a instance

Prediction probabilities NONE HOF i I8 Iy
Text with highlighted words
NONE

Our prayers are with you KanganaRanaut . Get well soon .You are the best Andh Bhakts are still
supporting her. Gadhi ¢Z kahal§e aate helye log

ror (I ojs4

|supporting

0.00

you ¢
.00
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All the components and layers in the proposed architecture is

important for classification

Abalation Type | Setup | Accuracy | F; Score
No removal Hierarchical 0.679 0.716
Setup 1 0.522 0.511
Component Removal Setup 2 0.524 0.408
Setup 3 0.521 0.511
Setup 4 0.518 0.510
Setup 5 0.519 0.506
Context Removal Setup 6 0.519 0.509
Setup 7 0.512 0.393

Setups 1, 2, 3 is created by removing a linear layer at a time and 4 is created by
removing 1, 2 together. Similarly Setups 5, 6 are created by removing context and
post and Setup 7 is created by removing both post and context.
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Some natural extension of the proposed model would be @ vorser

Softmax
outputs

Output Layer

[ User Level Analysis ]

| | I ([eXeloMmI I\ —~000)
hrpc I [ T ]
All the muslim countries' whg accepted Israel's identity may ‘Hale and A = Y\
your rotten ass burn jfi etephal fire with Israel Offensive| hr ; hpc .
2:30 AM.May 11,202 #/Twitter fér Android Q‘—‘ o’ NONE HOF
4Retweets 18 Mkes se Text with highlighted words
(CEENGXI®) Jrsess Our prayers are with you KanganaRanaut . Get well $00n .You are the [l BiHE BEakis are sl
1) <5 oo supporting her. Gadhi 42 [Kahaffle aate helye log
Not offensive on it's own but OO0 -0 000 ;15\::,
May 11 supports the parent tweet which (Andh
) Replying to ‘ :a‘(’ges:selt\e,:hh::?e(l:llassme‘j as |:’\: [ ‘ ‘ ‘ ‘ ‘ B bmluu,
= Hate and IS 18 £ £ | . I——:> L'
Amine et < /h hv\ y
p; o3
TlneiiQe. =2 ] < og
(T T LT B
| — w1 e £
Hate and you
MIEEEEEEEEEEEEEN | Hato and <:| mBERT/ MURIL / XLM-R b0
) n IS o2 Representations
T T T [ Hostility Detection ]
Hindi-English Conversational )
CodeMixed Dataset

) Rcontext/
\ ol | [ COMMENT A

[ Hierarchical Modelling Approach ]

Multiple other Other Social
languages media Platforms

The paper presented a novel hierarchical neural network architecture for detecting hate and offensive content in
Hindi-English Code-Mixed conversations.

It exploits the inherent hierarchy of the online social media conversational threads and provides selective and
abstractive context for a given utterance to boost the model performance.
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Thanks!
Any ?

Reach us at:

® c¢s2imtech14007@iith.ac.in
® cs2imtech16001@iith.ac.in

Or raise an issue at:
https://github.com/AditiBagora/Hasoc2021CodeMix
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