

Trie-NLG: Trie Context Augmentation to Improve Personalized Query Auto-Completion for Short and Unseen Prefixes

Accepted and Presented at ECML-PKDD 2023 Also to appear in Data Mining and Knowledge Discovery (DAMI)

<u>Kaushal Kumar Maurya¹</u>, Maunendra Sankar Desarkar¹, Manish Gupta² and Puneet Agrawal²

¹Department of CSE, IIT Hyderabad, India ²Bing AutoSuggest, Microsoft, Hyderabad, India

Outline

- Limitation of Existing QAC Models
- Goals and Problem Statement
- Proposed Approach: Trie-NLG
- Results and Analysis

PQAC: Personalized Query Auto-Completion

- Query Auto Completion (QAC): Recommend a list of relevant complete queries for partially typed search query (i.e. prefix)
- Helps in:
 - Saving keystrokes
 - System's understanding of search intent
 - Assisting users in efficiently expressing their intent

Session: mountains images||caves images||mountainside caves||mountain caves||timber wolves Prefix: wolf p Correct Query: wolf poetry

Generations:

1. wolf po	etry
------------	------

- 2. wolf pictures
- 3. wolf photos
- 4. wolf pics
- 5. wolf picture
- 6. wolf photo
- 7. wolf prints
- 8. wolf print

Existing QAC Models: A Taxonomy

Ref: Tahery, Saedeh, and Saeed Farzi. "Customized query auto-completion and suggestion—A review." Information Systems 87 (2020): 101415.

Trie/Ranking Models vs NLG Models

Trie/Ranking Models

- + Suggestions are more meaningful as they come from user log
- No personalization
- Provide limited number of suggestions
- No suggestions for <u>unseen prefixes</u>

NLG Models

- + Can model personalization
- + Generate suggestions for <u>unseen</u> <u>prefixes</u>
- For <u>short-prefixes</u>, suggestions are bad due to limited context
- Learn the generation biases from training dataset

Unseen and Short Prefixes in Bing Dataset

Char		Train			Validation	1	Test			
Length	Total	Seen	Unseen	Total	Seen	Unseen	Total	Seen	Unseen	
Total	20.40M	17.86M	2.54M	100K	92.43K	7.57K	100K	92.80K	7.20K	
[1-5]	9.10M	8.80M	0.30M	40.68K	40.39K	0.29K	40.19K	40.19K	0.27K	
[6-10]	4.30M	4.10M	0.20M	21.40K	21.07K	0.33K	21.24K	21.24K	0.38K	
10+	7.00M	4.96M	2.04M	37.92K	30.97K	6.95K	31.34K	31.37K	6.55K	

- Unseen prefixes are those for which completions are not present in Trie created from Bing query log dataset of 1.5 years. Corresponding dataset is unseen dataset.
- Dataset is collected from Jul 2020 to Dec 2021
- Approximately 12% examples do not have any suggestions from Trie
- Approximately 65% examples has prefix length less than 11 and approximately 44% has less than 6

Outline

- Limitation of Existing QAC Models
- Goals and Problem Statement
- Proposed Approach: Trie-NLG
- Results and Analysis

Factors to be Considered While Modeling

• Personalization

• Leverage user's session or query log

• Trie Context

• Consider the suggested completions from Trie

• Deployable Latency

Problem Statement

Let previous **n** queries (earliest to latest order) in the current <u>session s</u> be $\{q_1, q_2, \dots, q_n\}$. Current <u>query</u> is **q**, and **p** is the <u>query</u> <u>prefix</u> typed so far.

There are up to **m candidate query completions** (top-ranked to low-ranked order) c_1, c_2, \ldots, c_m available as additional context **e** from a trie.

Generate top-N query completions conditioned on current query prefix p, additional trie context e, and session information s i.e., $P_{\theta}(q \mid p; e; s)$

- □ Limitation of Existing QAC Models
- Goals and Problem Statement
- Proposed Approach: Trie-NLG
- Results and Analysis

Three Major Components of Trie-NLG

- Trie Context Extraction (MPC_{Main}) for seen prefixes
- Synthetic Context Extraction (MPC_{Synth}) for unseen prefixes
- Context Augmentations in NLG (LLM)

Example1: Short Prefix

Prefix: go Clicked Query: google.com

Example2: Unseen Prefix

Prefix:kindle e-readerClicked Query:kindle e-reader questionnaire

Trie Context Extraction (MPC_{Main})

Synthetic Context Extraction (MPC_{Synth})

Context Augmentations in NLG (LLM)

- □ Limitation of Existing QAC Models
- Goals and Problem Statement
- Proposed Approach: Trie-NLG
- Results and Analysis

Experimental Setup: Evaluation Metrics

• Mean Reciprocal Rank (MRR) [From IR Literature]

$$MRR = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{r_i}$$

• <u>Bilingual Evaluation Understudy (BLEU)</u> [From NLP Literature]

$$\mathrm{BP} = \left\{ \begin{array}{ll} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \leq r \end{array} \right.$$

Then,

BLEU= BP
$$\cdot \exp\left(\sum_{n=1}^N w_n \log p_n\right)$$
.

• BLEU Reciprocal Rank (BLEU_{RR}) [From IR+NLP]

$$B_{LEU_{RR}} = \frac{1}{N} \sum_{i=1}^{N} \frac{\sum_{j=1}^{k} \frac{1}{j} B_{LEU}(q_{i}^{\star}, \hat{q}_{i,j})}{\sum_{j=1}^{k} \frac{1}{j}}$$

1. MRR & RR_BLEU: Yadav, Nishant, et al. "Session-aware query auto-completion using extreme multi-label ranking." KDD 2021.

BLEU: Papineni, Kishore, et al. "Bleu: a method for automatic evaluation of machine translation." ACL 2002.

Experimental Setup: Datasets and Baselines

Char		Bing Train		AOL Train Validation				
Length	Total	Seen	Unseen	Total	Seen	Unseen		
Total	20.40M	17.86M	2.54M	3.91M	3.47	0.44M		
[1-5]	9.10M	8.80M	0.30M	1.42M	1.42M	0.00M		
[6-10]	4.30M	4.10M	0.20M	1.15M	1.11M	0.04M		
10+	7.00M	4.96M	2.04M	1.34M	0.94M	0.40M		

- Multi-level pre-processing for AOL
- AOL unseen splits are obtained with Bing Trie
- For both datasets, there is each 100K val and test split

Models	AOL ALL Dataset			AOL Seen Dataset			AOL	Unseen Dat	aset		(1) Unseen in only
	MRR	BLEU _{RR}	BLEU	MRR	BLEU _{RR}	BLEU	MRR	BLEU _{RR}	BLEU	1/1	~11%
TrainMPC	20.6	5.4	15.25	23.2	6.1	19.49	-	-	-		(2) The trie
TrainMPC + SynthMPC	31.3	12.0	40.10	23.2	6.1	19.49	<u>95.2</u>	<u>58.7</u>	<u>95.66</u>	Í	Unseen prefixed is
TrieMPC	19.7	9.9	24.44	22.2	11.2	29.75	-	-	-		limited for NLG
TrieMPC + SynthMPC	30.4	16.6	47.76	22.2	11.2	29.75	<u>95.2</u>	<u>58.7</u>	<u>95.6</u>		models
GRM	21.8	7.3	20.69	24.6	8.3	23.33	-	-	-	$\left \right\rangle$	(3) Synth MPC
Seq2Seq LSTM	43.9	14.7	51.43	43.6	12.9	49.16	47.1	39.3	69.18	` ,	context for MPC
Seq2Seq Transformer	45.4	16.8	57.50	44.5	14.8	51.79	51.9	32.3	73.62	` (models
Т5	48.1	17.4	59.63	46.6	15.2	53.42	59.5	34.6	77.18	``	
BART	51.9	18.3	61.89	50.3	16.1	55.64	64.7	35.8	79.55	1	
BART + ITC	50.7	18.3	61.55	49.1	16.0	55.29	63.5	35.9	79.24	1	
BART + MPC _{Main}	53.2	18.6	62.48	51.8	16.4	<u>56.58</u>	64.1	35.6	79.21	1	
Trie-NLG	<u>56.5</u>	<u>19.3</u>	<u>66.63</u>	<u>52.0</u>	<u>16.5</u>	56.56	92.1	41.2	94.62		

Percentage (%) Improvement over TrainMPC + SynthMPC Baseline model

Models	Bi	Bing Seen Dataset			Bing Unseen Dataset				
	ΔMRR	ΔBLEU _{RR}	ΔBLEU	ΔMRR	ΔBLEU _{RR}	ΔBLEU	ΔMRR	ΔBLEU _{RR}	ΔBLEU
TrainMPC	-7.90	-19.87	-24.64	0.00	0.00	0.00	-	-	-
TrieMPC	-0.11	36.61	26.38	8.49	70.38	63.68	-	-	-
TrieMPC + SynthMPC	7.78	56.42	47.01	8.49	70.38	63.68	0.00	0.00	0.00
GRM	-1.43	-5.32	-5.51	4.30	19.02	16.58	-	-	-
Seq2Seq LSTM	9.61	39.30	56.78	10.24	44.02	72.20	5.34	16.61	91.45
Seq2Seq Transformer	15.74	54.22	76.16	18.24	55.07	82.46	10.53	24.20	99.29
Т5	20.78	61.81	78.70	20.76	70.83	85.13	21.60	27.33	103.9
BART	36.73	73.47	91.09	36.95	84.51	100.4	34.53	29.03	110.3
BART + ITC	31.66	71.43	88.72	31.58	81.97	96.84	33.05	29.12	111.0
BART + MPC _{Main}	54.12	86.77	110.7	56.14	101.3	129.0	34.10	28.04	110.8
Trie-NLG	<u>56.78</u>	<u>88.26</u>	<u>114.5</u>	<u>56.56</u>	<u>101.9</u>	<u>130.0</u>	<u>59.7</u>	<u>33.0</u>	<u>123.0</u>

Results: Short Prefixes

		Prefix Length in [1-5]					Prefix Length in [6-10]					
Bing Dataset		Δ MRR	$\Delta \mathbf{BLF}$	URR	$\Delta \mathbf{I}$	BLEU	ΔMF	RR	$\Delta BLEU_{RR}$		$\Delta \mathbf{BLEU}$	
BART		21.6	-17.6			2.9	38.5	5	38.4		56.8	
$BART + MPC_{Ma}$	in	52.1	-16.8			10.1	55.2	2	49	.3	72.1	
TRIE-NLG		53.2	-15.9		1	1.4	56.4		4 50.1		73.6	
AOL Dataset		MRR	BLE	URR	B	LEU	MR	R	BLE	U _{RR}	BLEU	
BART		41.3	8.	0	3	5.39	52.2	2	14	.3	53.39	
$BART + MPC_{Ma}$	in	41.5	8.0		3	5.25	54.3	1	14.7		54.08	
TRIE-NLG	2	42.1	8.1		3	5.58 55.2		2	14.9		55.56	
		Prefix Length 10+										
ĺ	Bi	ng Datase	$\Delta MRR \Delta BLE$		$\mathbf{U_{RR}} \mid \Delta \mathbf{E}$		BLEU					
	BA	ART	49.1	1	190	190.0		120.1				
	BA	ART + MP	Main 55.6 60.7		218.5 221.1		1	145.1				
TF		RIE-NLG						149.5				
Α		OL Datase	et	MR	R	BLEURR		B	LEU			
ĺ	BA	ART		63.2		32.8		7	5.40			
	BA	ART + MP	C_{Main}	65.	1	33	.4	7	76.20			
	TR	IE-NLG	73.	4	35	.1	8	2.79				

Example-1: Se	en Short Prefix	Example-2: Unseen Prefix					
Session: kysportsradio kysp cincinnati reds espn sports ebth.com ebth.com cnn r news Prefix: p Correct Query: politico	oortsradio cincinnati reds espn sports ebth ews cnn news politico	Session: hurricane resistant hurricane lines houston crap houston crap plan hurricane climate Prefix: houston climate actio Correct Query: houston climate action plan					
Completions (MPC _{Main}): 1. pinterest 2. paypal 3. pittsburgh penguins 4. pandora 5. prime video 6. paypal login account 7. pennlive 8. pogo official site	Completions (Trie-NLG): 1. politico 2. profootballtalk 3. politico news 4. pittsburgh pirates 5. pogo official site 6. page tour 7. philadelphia inquirer 8. pennlive	Completions(MPC _{Main}): None Completions(MPC _{Synth}): 1. houston climate action policy	Suggestions (Trie-NLG): 1. houston climate action plan 2. houston climate action policy 3. houston climate action play 4. houston climate plan action 5. houston climate action plan tx 6. houston climate action program 7. houston climate action plan plan 8. houstonclimate action plan				

Other Analyses

- Ablation Study
- Trie Completion Retention Analysis
 - Number of examples where t trie completions were retained in the Trie-NLG
 - Trie retention wrt to position
- Runtime Analysis

Contributions

- We motivated the need for incorporating both popularity signals from tries and personalization signals from session to develop effective PQAC model, especially for short and unseen prefixes.
- We proposed a novel architecture, Trie-NLG, this is the first attempt of Trie knowledge augmentation in NLG models for personalized QAC.
- Achieved SOTA performance on two real prefix-to-query click behaviour QAC datasets from Bing and AOL.

 Anonymous reviewers for Constructive feedback
Microsoft for MAPG 2022 grant for Research and Travel Support

{Problem definition, Related Work, Methodology, Results, Contributions}

Thank You

Contact us:

References

- 1. Bar-Yossef, Z., & Kraus, N. (2011, March). Context-sensitive query autocompletion. In Proceedings of the 20th international conference on World wide web (pp. 107-116).
- 2. Shokouhi, M., & Radinsky, K. (2012, August). Time-sensitive query auto-completion. In Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval (pp. 601-610).
- 3. Shokouhi, M. (2013, July). Learning to personalize query autocompletion. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval (pp. 103-112).
- 4. Kannadasan, M. R., & Aslanyan, G. (2019). Personalized Query AutoCompletion Through a Lightweight Representation of the User Context. arXiv preprint arXiv:1905.01386.
- 5. Bhaskar Mitra and Nick Craswell. 2015. Query auto-completion for rare prefixes. In CIKM.
- 6. Bhaskar Mitra. 2015. Exploring session context using distributed representations of queries and reformulations. In Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval. ACM, 3–12.
- 7. Taihua Shao, Honghui Chen, and Wanyu Chen. 2018. Query Auto-Completion Based on Word2vec Semantic Similarity. In Journal of Physics: Conference Series, Vol. 1004. IOP Publishing, 012018
- 8. Yin, Di, et al. "Learning to Generate Personalized Query Auto-Completions via a Multi-View Multi-Task Attentive Approach." *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.* 2020.
- 9. Kim, G. (2019). Subword Language Model for Query Auto-Completion. arXiv preprint arXiv:1909.00599.
- 10. Park, D. H., & Chiba, R. (2017, August). A neural language model for query auto-completion. In Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1189-1192).
- 11. Qureshi, Abdur Rehman Anwar, and M. Ali Akcayol. "Long Short-Term Memory Based Query Auto-Completion." 2021 8th International Conference on Electrical and Electronics Engineering (ICEEE). IEEE, 2021.

