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Landscape of Large Languages Models 

[1] Naveed H, Khan AU, Qiu S, Saqib M, Anwar S, Usman M, Barnes N, Mian A. A comprehensive overview of large language models. arXiv preprint 
arXiv:2307.06435. 2023 Jul 12.
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Diversity Capabilities of Large Languages Models 

[2] Minaee S, Mikolov T, Nikzad N, Chenaghlu M, Socher R, Amatriain X, Gao J. Large language models: A survey. arXiv preprint arXiv:2402.06196. 2024 Feb 9.
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Research Hypothesis

Whether directing an input query to the most suitable subset of LLM from a 
large pool of diverse LLMs lead to better performance in terms of accuracy and 
latency? 
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Methodology: Overview
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Methodology: LLM Sampling
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Methodology: Answer Extraction and Data Preparation
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Majority Voting (MAJ@K ∈ {0, 1}) 
determines whether 
the most frequent 

answer matches the 
gold answer or not.

The target label for an 
input query q ∈ Q is 

given by label (q) = {l | 
l ∈ L, maj@10 (q, l) = 

1}



Methodology: LLM Routing Models
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● Multi-label Classifier
○ BERT, DistilBERT, RoBERTa, and T5

● Separate Classifier
○ BERT, DistilBERT, RoBERTa, and T5

● Clustering-Based Routing
○ TF-IDF, RoBERTa

● Smaller models, utilizing only a few layers 
of PLMs, Random Forests, etc.



Methodology: LLM Routing Policies
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With Classifier Predicted Confidence Score

1. ArgMax
2. Random
3. Prediction with random forest
4. Sorted Prediction (similar to 3)
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1. Oracle
2. Random
3. Individual Models
4. All LLMs
5. Classifier Upper Bound
6. LLM Routing Models + Policies

Accuracy 

Experimental Setup

GSM8K
Mathematical Reasoning Task

Latency
MMLU

Natural Language 
Reasoning/Understanding Task

Datasets/Benchmarks Evaluation Metrics Baselines/Other Models
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Evaluation Results
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Evaluation Results: Learned Lessons-I 
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Ques: Does including multiple LLMs solve all 
questions in a given dataset? 

Ans: 10% of questions cannot be solved by 
all LLMs combined.



Evaluation Results: Learned Lessons-II 
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Ques: Can the upper bound performance of 
the classifier/clustering be equal to the 
Oracle model performance?

Ans: NO, due to small training data (∼9k in 
GSM8K and 15k in MMLU)



Evaluation Results: Learned Lessons-III 
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Ques: Does router modeling with multi-label 
classifiers exhibit better performance than 
individual LLMs?

Ans: NOT with ALL, better than weaker LLMs 
but lower or similar to the best single LLM 



Evaluation Results: Learned Lessons-IV 
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Ques: What is the impact of different policies 
on LLM router modeling?

Ans: The predictions-based policy is better 
than other policies; however, the classifier 
performance presents a serious bottleneck.



Evaluation Results: Learned Lessons-V 
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Ques: What is the impact of LLM routing on 
inference latency?

Ans: The proposed LLM routing model 
consistently maintains a latency score equal 
to or lower than any individual LLM.

Inference latency (in second) with A100 GPU
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Conclusion
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● The theoretical bounds of LLM routing is much higher 
than individual models’ performance.

● LLMs routing is a feasible direction that works best with 
equally capable LLMs. 

● If a few LLMs dominate, the router’s performance 
degrades, even though it still outperforms weak LLMs.

● The inference latency of the routing model is at least at 
the same level as that of single LLMs.



Future Work
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● Larger datasets for LLM routing
● Novel models for LLM routing 
● Better routing policies
● Incorporating LLM-specific features
● Scaling to diverse LLMs and benchmarks
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