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Introduction: Landscape of Low-resource Languages

e /000+ languages across the globe [3]
e Only ~300 languages has wikipedia page

e The majority of NLP research focuses on The Long Tail of Data
English [3, 4] only - less inclusive and | o
less diverse. e

e The majority of the global s

population—roughly 95%—does not g o \

speak English as their primary language,
and a staggering /5% do not speak
English at all?

aaaaaaaaaaaa

[3] Joshi et al., ACL 2020; [4] E. Bender, The Gradient, 2019

"https://en.wikipedia.org/wiki/List of languages by total number of speakers



https://en.wikipedia.org/wiki/List_of_languages_by_total_number_of_speakers

Introduction: Limited data for LRLs

88% languages fall into class O
and untouched by language
technology [3]

Only ~100 languages are part of
existing large language model,
even for those languages, NLG
(MT) adaptability is challenging [5]

[3] Joshi et al., ACL 2020; [5] Ahuja et al. 2023
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Introduction: Extremely LRLs (ELRLS)

A\

Lacks parallel data

A\

Lacks monolingual data

A\

Representations are absent from existing multilingual
pre-trained language models



Problem Statement

“Machine Translation from ELRL to English in
the zero-shot setting.”



Literature Review: MT for LRLs

Cross lingual transfer among languages: Multilingual NMT
Reduce reliance of parallel data: Unsupervised NMT

Monolingual corpus incorporated NMT: Back-translation

Y ¥V Y Y

Data augmentation approaches for MT:
o Word level perturbation

o BPE vocabulary overlapping among related languages [23]

Limited Efforts has been made for ELRL for MT task

[23] Patil et al,, ACL 2022



Motivation: Hopeful direction

e Utilize relatedness among languages

o Dialectal variations Hindi:  Shelifadel & T&e wAsTer & e Repl§ 7-2 31
o Vocabulary sharing

. _ Bhojpuri:  #aITaT & T&® sTSTel & 83-¢ -85 RIS 7-2 F a7
o Similarities due to Geographical .

Lexical level similarity between Hindi and Bhojpuri languages
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Motivation: Hopeful direction

Earlier Success for ELRL:

e Recall: Exploit lexical similarity through char-noise augmentation [24]

HVIN:‘ ‘}mimmwmmﬁﬁém ii:|‘
v v V¥

. . . N-HIN: ST & e 9a1 & der Repls 7-2 771

Limitations: BHO: 131 & &eT ASTd & 38-2-88 Raps 7-2 F a7l

e Studies limited to NLU tasks only
e Applied with LLM vocab which hinders scalability
e Char Noise augmentation may be suboptimal

[24] Aepli et al., ACL 2022 (Findings)



Motivation: Beyond Character Noise Augmentation

ENG:

HRL (HIN):

9 Ui O AR & Y31l A1Hd STs b SRR & JrE- 31T |

The initial cases of the disease this season were reported in late July.

HRL (HIN)+CSN: T_UISH A &Rl & __ U H1Hd Sdls & SRR 7 I 314 _|

ELRL1 (BHO):

U o I S SR & ufger A Jars & SRR & 9 31 713d 8 |

ELRL2 (HNE):

U IS 4 USRI & afgdl A Sdrs & SRR J I 31U ey |

Character-span Noise Augmentation

Candidate Alphabets
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Methodology: CHARSPAN Model

Target HRL

Transformer Encoder-
Decoder (M')

Transformer Encoder-

Decoder (M)

Source HRL
[ + Noise Injection ’ [BPE Vocabulary]

T

Source HRL

(a) Supervised Training Phase (b) Generation Phase
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Methodology: CHARSPAN Model

Constraints: HRLs and LRLs should be closely related
Data Sources:

o No monolingual or parallel data for ELRLs.

o Used only HRL's alphabets.

Model Training: No pre-trained LLMs, trained from scratch.
Noise Augmentation Span: Applied 1-3 character grams.
Operations: Delete and n-gram to single character insertion.
Noise Injection Percentage: Injected noise at 10-11%.
Zero-shot Evaluation:

o Trained on proxy HRL parallel data.

o Evaluated with unseen ELRLs

12



Methodology: Algorithm

Algorithm 1 CHARSPAN: Character-span Noise Augmentation Algorithm

Require: [Inputs] high resource language data (D3 (X,))) from H-En parallel corpus, range of noise augmentation

percentage [P1, P2], set of noise augmentation candidates C' (see Fig. 3), largest character n-gram size N that will
be considered for noising

Ensure: [Output] Noisy high resource language data (D;{)

1: Augmentation percentage (I,) = random float(P1, P2) # find a random float value between P1 and P2
2: Augmentation factor (o) = int(I,/N)
3: foreach hin X do
4 Let sz be the number of characters in h.
5.  LetIndices = {[(N/2)],---,sz — [(N/2)]} # Leaving [(N/2)] character indices from beginning and end
6: Randomly select S = N * « character indices from Indices
7: for each £ in S do
8: Span gram (Spn) = sample character-span size uniformly from {1, 2, ..., N} with equal probability
9: Operation (O,) = sample operations uniformly from { delete, replace } with equal probability
10: Ca={}
L1 if (Op) is replace then
12: Candidate char (c) = single sample character uniformly from C' with equal probability
13: Append candidate char c in Cy
14: end if
15: if Spy == 1 then
16: Perform the operation (O,) with Cy at the index &
17: else
18: Perform the operation (O,) with Cjy at the indexes from k — int((Spn — 1)/2) to k + int((Sp~y — 1)/2)
19: end if
20: end for
21: end for

13



Methodology: Intuition

Noise augmentation act as regularizer
Facilitate better a cross-lingual transfer from HRL to ELRL in source

side
Char-Span Noise augmentation enable cross-lingual transfer to
distant languages i.e., transfer to less lexically similar to HRLs

14



Experimental Setup

.- HRL: Hin and Mar

EU4 Bharat [9]

/ Bhojpuri (bho)

Chhattisgarhi (hne)
Sanskrit (san)

\

Automatic evaluation

—

Maithili (mai)
Indo-Aryan Magahi (mag) FLORES 200
el Awadhi (awa) (ELRLS)
NN Nepali (npi)
\\\ Kashmiri (kas)
\\\KKonkani (GOM) /
.-~ HRL:Espand Por  Rapp (2021) [10]
e Catalan (cat) FLORES 200
Romance
______________ [ Galician (glg) (ELRLs)
T HRL: Ind and Mal OPUS
FLORES 200
Malay-Polynesian Javanese (Jav)
________________ Sundanese (sun) (ELRLs)
3 Families 12 ELRLs & 6 HRLs Datasets

BLEU
ChrF
BLEURT
COMET

Human evaluation

XSTS

Evaluation Metrics

Word-drop [6]
SubwordDropout [6]
BPE-drop [12]
SwitchOut [13]
SubwordSwitchOut
OBPE [14]
BPE-Dropout [15]

Qandom Char Noise [7]/

/Vanitla NMT [11] [12] \

9 Baselines



Evaluation Results

[ChrF Scores]

Models Indo-Aryan Romance Malay-Polynesian Averige
Gom Bho Hne San Npi Mai Mag Awa | Cat Glg Jav Sun
BPE* 26.75 39.75 4657 2797 30.84 39.79 48.08 46.28 | 33.32 53.75 | 3144 3221 38.06
WordDropout 27.01 39.57 46.19 28.13 3191 4031 4737 4648 | 3420 52.21 | 32.03 32:52 38.16
SubwordDropout 2791 40.11 4626 2946 3256 4099 4791 4743|3509 52.28 | 33.38 33.47 38.90
WordSwitchOut 25.17 38.81 4587 2621 2995 39.69 47.53 4454|3298 51.81 | 31.84 32.49 37.24
SubwordSwitchOut 26.08 38.84 4584 28.19 30.81 40.19 47.28 4593 |33.26 53.71 | 31.24 32.06 37.78
OBPE 2790 40.57 4746 28.52 3199 40.71 49.10 47.16 | 32.33 52.77 | 29.98 30.88 38.28
SDE 28.01 4091 47.88 28.66 32.03 40.82 4896 4730|3372 5395 | 31.84 31.24 38.77
BPE-Dropout* 28.65 40.84 46.58 28.80 31.88 40.79 47.86 47.32 | 3456 55.83 | 32.01 3297 39.00
unigram char-noise** 28.85 42.53 4935 29.80 34.61 42.67 5097 4943 |43.16 54.81 | 35.42 36.69 41.52
BPE — SpanNoise*** (ours) 28.66 4194 4948 3049 35.66 4475 50.55 49.21 |43.11 54.89 | 36.12 37.11 40.16
CHARSPAN (ours) 29.71 4375 51.69 3140 3652 4584 5190 50.55|4351 55.46 | 36.24 37.31 42.82
CHARSPAN + BPE-Dropout (ours) | 29.91 44.02 51.86 30.88 37.15 46.52 52.99 51.34 | 4493 55.87 | 36.97 38.09 43.37

Zero-shot chrF scores for ELRLs — English

e Similar improvements in BLEU, COMET and BLEURT metrics
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Results Observations

The proposed model shows the huge improvement over BPE and
traditional sub(word) based perturbation models

17



Analysis: Cross-lingual Transfer

Models Bho Hne San Npi Mai Mag Awa
BPE 0.761 0.793 0.701 0.744 0.762 0.809 0.792
UCN 0.853 0.888 0.765 0.821 0.849 0.897 0.883
CHARSPAN | 0.871 0.909 0.789 0.858 0.868 0.913 0.901

Average cosine similarity between representations of source HRLs and source
ELRLs for Indo-Aryan family.

Observation: The latent representation space between HRL and ELRL(s) is more
aligned with the CharSpan model, facilitating better cross-lingual transfer.

18



Analysis: Mitigate Zero-shot Translation Errors

Examples

Sentence Type

Source/Target/Generation

BHO to
ENG

Source Input

3 3T DA, "§HAT b U TN 4-HGHT & HH o1 SId Ulge AYHE b SR I IRd 35 b 3d & S dTART 4 gad
T

Reference Target

We now have 4-month-old mice that are non-diabetic that used to be diabetic," he added.

"We have Ago 4-month-old Mous Ba Jawan Pahil, who is suffering from diabetes, but now get rid of

BPE
the disease," "he added."

UCN "We had a 4-month-old daughter who was first suffering from diabetes, but now we are free from a
disease," "he added.

CHARSPAN We had 4-month-old mice that are non-diabetic, but now free from the diabetic,"” "he added."

HNE to
ENG

Source Input

BTAT USOC ! HYTIT TgHd B b faueT H<T s> THT TRIC I Rfdged! fgd I [d-1ge | Wd are gl g 1+
syl aRadeT Wy sifa SR ot I a1 A [

Reference Target

We agree with the USOC's statement that the interests of our athletes and clubs, and their sport, may be
better served by moving forward with meaningful change within our organization, rather than decertification.

Hami agreed to the USOC that dissolution Bhanda Baru Hamra Ethlite Club interested in Tiniharuko Play

BRE Syed Hamro Bhitra meaningful changes along with Ah Ramro Service Day

UCN Hami agrees with the USOC that dissolution Bhanda Baru Hamra Athlete Club Bahruko interested in
Tinihruko Games Sayyid Hamro Sangha Change with Azhi Ramro Seva Day

CHARSPAN We agreed with the USOC that the dissolution would be in the interest of athletes and clubs, and their sport

and grow a friendly, meaningful transformation and celebrate rather than decertification in organization.

Observation: Char-Span Model Successfully mitigate the translation error

from BPE and UNC models.

19



Conclusion & Future Work

CharSpan Model outperforms strong baselines across 12 ELRLs for
ELRLs — English MT task

The proposed model does not required monolingual data, parallel
data and LLM multilingual representation.

Highly Scalable

Cumulative gain of 12.34% chrF over Vanilla-NMT (BPE) model

Future works:

Extend to other NLG tasks
Potential impact for English — ELRLs MT task

20
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