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Introduction: Landscape of Low-resource Languages 

● 7000+ languages across the globe [3] 
● Only ~300 languages has wikipedia page
● The majority of NLP research focuses on 

English [3, 4] only - less inclusive and 
less diverse.

● The majority of the global 
population—roughly 95%—does not 
speak English as their primary language, 
and a staggering 75% do not speak 
English at all1

1https://en.wikipedia.org/wiki/List_of_languages_by_total_number_of_speakers

[3] Joshi et al., ACL 2020; [4] E. Bender, The Gradient, 2019 

https://en.wikipedia.org/wiki/List_of_languages_by_total_number_of_speakers
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Introduction: Limited data for LRLs 

● 88% languages fall into class 0 
and untouched by language 
technology [3]

● Only ~100 languages are part of 
existing large language model, 
even for those languages, NLG 
(MT) adaptability is challenging [5] 

[3] Joshi et al., ACL 2020; [5] Ahuja et al. 2023



Introduction: Extremely LRLs (ELRLs)

➢ Lacks parallel data

➢ Lacks monolingual data

➢ Representations are absent from existing multilingual 
pre-trained language models 
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Problem Statement
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“Machine Translation from ELRL to English in 
the zero-shot setting.”



Literature Review: MT for LRLs

➢ Cross lingual transfer among languages: Multilingual NMT

➢ Reduce reliance of parallel data: Unsupervised NMT

➢ Monolingual corpus incorporated NMT: Back-translation

➢ Data augmentation approaches for MT:
○ Word level perturbation 
○ BPE vocabulary overlapping among related languages [23]

Limited Efforts has been made for ELRL for MT task
7[23]  Patil et al., ACL 2022



Motivation: Hopeful direction

● Utilize relatedness among languages
○ Dialectal variations
○ Vocabulary sharing
○ Similarities due to Geographical 

proximity

● Many ELRLs are related with some 
High resource Language (HRL) 

कनाडयन  के खलाफ  नडाल  का सीधा रकॉडर्ड  7-2 है।

कनाडा  के खलाफ़  नाडाल  के हेड-टू -हेड रकॉडर्ड  7-2 के बा।

Hindi:

Bhojpuri:

Lexical level similarity between Hindi and Bhojpuri  languages
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Lexical Similarity heatmap



Motivation: Hopeful direction
Earlier Success for ELRL:

● Recall: Exploit lexical similarity through char-noise augmentation [24]

● Studies limited to NLU tasks only
● Applied with LLM vocab which hinders scalability 
● Char Noise augmentation may be suboptimal

Limitations:

9
 [24] Aepli et al.,  ACL 2022 (Findings)



Motivation: Beyond Character Noise Augmentation
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Character-span Noise Augmentation



Methodology: CHARSPAN Model
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● Constraints: HRLs and LRLs should be closely related
● Data Sources:

○ No monolingual or parallel data for ELRLs.
○ Used only HRL's alphabets.

● Model Training: No pre-trained LLMs, trained from scratch.
● Noise Augmentation Span: Applied 1-3 character grams.
● Operations: Delete and n-gram to single character insertion.
● Noise Injection Percentage: Injected noise at 10-11%.
● Zero-shot Evaluation:

○ Trained on proxy HRL parallel data.
○ Evaluated with unseen ELRLs 12

Methodology: CHARSPAN Model



Methodology: Algorithm
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Methodology: Intuition 

● Noise augmentation act as regularizer
● Facilitate better a cross-lingual transfer from HRL to ELRL in source 

side 
● Char-Span Noise augmentation enable cross-lingual transfer to 

distant languages i.e., transfer to less lexically similar to HRLs
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Experimental Setup

 Javanese (Jav)
Sundanese (sun)

EU4 Bharat [9]HRL: Hin and Mar

Vanilla NMT [11] [12]

Word-drop [6]

SubwordDropout [6]

BPE-drop [12]

SwitchOut [13]

SubwordSwitchOut

OBPE [14]

BPE-Dropout [15]

Random Char Noise [7]

Indo-Aryan

Malay-Polynesian 

FLORES 200
 (ELRLs)

BLEU
ChrF
BLEURT
COMET

15

Automatic evaluation

Human evaluation

XSTS

FLORES 200
 (ELRLs)

Romance

HRL: Ind and Mal      OPUS

Catalan (cat)
Galician (glg)

FLORES 200
 (ELRLs)

HRL: Esp and Por Rapp (2021) [10]

Bhojpuri (bho)
Chhattisgarhi (hne)
Sanskrit (san)
Maithili (mai)
Magahi (mag)
Awadhi (awa)
Nepali (npi)
Kashmiri (kas)
Konkani (GOM)

   3 Families                           12 ELRLs & 6 HRLs              Datasets                        Evaluation Metrics                         9 Baselines



Evaluation Results [ChrF Scores]

Zero-shot chrF scores for ELRLs → English

● Similar improvements in BLEU, COMET and BLEURT metrics
16



Results Observations

● The proposed model shows the huge improvement over BPE and 
traditional sub(word) based perturbation models

●  
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Analysis: Cross-lingual Transfer

Observation: The latent representation space between HRL and ELRL(s) is more 
aligned with the CharSpan model, facilitating better cross-lingual transfer.

.
18

Average cosine similarity between representations of source HRLs and source 
ELRLs for Indo-Aryan family.



Analysis: Mitigate Zero-shot Translation Errors

Observation:  Char-Span Model Successfully mitigate the translation error 
from BPE and UNC  models. 19



Conclusion & Future Work

● CharSpan Model outperforms strong baselines across 12 ELRLs for 

ELRLs → English MT task

● The proposed model does not required monolingual data, parallel 

data and LLM multilingual representation.

● Highly Scalable 

● Cumulative gain of 12.34% chrF over Vanilla-NMT (BPE) model
Future works:
● Extend to other NLG tasks

● Potential impact for English → ELRLs MT task
20
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