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Introduction: Language Landscape

● 7000+ languages across the globe
 

● Around only 300 languages have wikipedia 
articles

● Languages data resources availability 
follows long-tail distribution

● Majority of research focus on English - Less 
Inclusivity and Diversity [1, 2]
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Source: Graham Neubig Multilingual NLP Lectures 

https://www.google.com/url?q=http://demo.clab.cs.cmu.edu/11737fa20/slides/multiling-01-intro.pdf&sa=D&source=editors&ust=1749370183677959&usg=AOvVaw1xWJM9tXUW7Gv-vRdfVPq_


Introduction: Machine Translation (MT)

● Cross lingual transfer among languages - Multilingual NMT [3]

● Reduce reliance of parallel data - Unsupervised NMT [4]

● Monolingual corpus incorporated NMT  - Back-translation [5] 

● Data augmentation approaches for MT:
○ word level perturbation [6]
○ overlapping BPE among related languages [8]
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Introduction: ELRLs

Languages lack parallel data, have limited monolingual data, no 
existing multilingual pre-trained language models - Extremely 

Low Resource Languages (ELRLs)

Limited Efforts has been made for ELRL for MT task
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Motivation: Hopeful direction

● Utilize relatedness among languages
○ Dialectal variations
○ Vocabulary sharing
○ Similarities due to Geographical 

proximity

● Many ELRLs are related with some 
High resource Language (HRL) 

कनाडयन  के खलाफ  नडाल  का सीधा रकॉडर्ड  7-2 है।

कनाडा  के खलाफ़  नाडाल  के हेड-टू -हेड रकॉडर्ड  7-2 के बा।

hin:

bho:

Lexical level similarity between languages
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Lexical Similarity heatmap



Motivation: Hopeful direction
Earlier Successful for ELRL:

● Recall: Exploit lexical similarity through injecting random noise [2]

● Studies limited to NLU tasks only

● Random Noise Injection in HRL may be suboptimal for NLG task 
especially MT as injections are random

● Noising strategy should be systematic and incorporate linguistic signals 

Limitations:
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Problem Statement

Machine Translation from ELRL to English in 
the zero-shot setting
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Proposed Methodology: Overview

Methodology: 
○ Proposed character noise injection-based modeling approach
○ Noise injection is performed in HRL to English parallel data
○ Act as proxy parallel training data for ELRL to English translation 

task
○ The noise injection candidates are extracted with BPE merge 

operations and edit operations  (called selective noise)
○ Noise is injected with sampling algorithm: Greedy, top-k and top-p
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Proposed Methodology: Overview

● Intuition: 
○ Noise injection act as regularizer
○ Facilitate better a cross-lingual transfer from HRL to ELRL in 

source side 

● Hypothesis:

○ Selective noise injection model is expected to outperform 
random noise injection

○ Performance of the selective noise injection should be 
comparable to supervised noise injection
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Proposed Methodology: SELECTNOISE
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Proposed Methodology: Candidate Extraction 

BPE Merge operation and 
edit-operations

Selective Character Candidate 
Pooling
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Proposed Methodology: Noise Injection 

Greedy

Top-k

Top-p
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Source HRL H Source Noisy HRL 
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Experimental Setup

● ~ 1000 monolingual sentence are used for each ELRLs

● Noise injection percentage is 5-10% on related HRL 

data

● Zero-shot setting: Training only on proxy HRL parallel 

data and evaluate with unseen ELRLs
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Experimental Setup

Bhojpuri (bho)
Chhattisgarhi (hne)
Sanskrit (san)
Maithili (mai)
Magahi (mag)
Awadhi (awa)
Nepali (npi)
Kashmiri (kas)

Catalan (cat)
Galician (glg)
Asturian (ast)
Occitan (oci)

AI4Bharat [9]Hindi (HRL)

ES (HRL) Rapp (2021) [10]

Vanilla NMT [11] [12]

Word-drop [6]

BPE-drop

SwitchOut [13]

OBPE [14]

BPE-Dropout [15]

Random Char Noise [7]

Indo-Aryan

Romance

2 Language families 12 ELRLs; 2 HRLs Datasets Evaluation metrics 7 Baselines

FLORES 200
 (ELRLs)

BLEU
chrF
BLEURT
COMET
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Automatic evaluation

Human evaluation

XSTS

FLORES 200
 (ELRLs)



Results: Automatic Evaluation (ChrF Scores)

Zero-shot chrF scores for ELRLs → English

● Similar improvements in BLEU, COMET and BLEURT metrics
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Results: Human evaluation

● Evaluation on 24 examples for each language

● Cross Lingual Semantic Text Similarity (XSTS) [16] metric scores 

between 1-5
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Analysis: Language similarity vs Performance

Observation: High lexical similarities with High-resource 
language more the translation performance  
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Analysis: Impact of Monolingual Data Size

Observation:  Extracting edit-operations from larger monolingual corpus 
improves the translation performance
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Conclusion & Future Work
● SelectNoise outperforms strong baselines across 12 ELRLs for ELRLs 

→ English MT task

● Unsupervised noise injection gives comparable performance with 

Supervised approach

● Cumulative gain of 11.3% chrF over Vanilla-NMT

Future works:

● Extend to other NLG tasks

● Potential impact for English → ELRLs MT task
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Contact us:
Mail: cs23resch01004@iith.ac.in 
Lab Mail: nlip@cse.iith.ac.in

Lab Webpage: https://nlip-lab.github.io/
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