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Task Definition

Task: Generation of long, coherent and grammatically 
correct wrong options given a triplet <article, question, 
correct answer>.
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Distractor Generation: The task of generating 
incorrect options for reading comprehension MCQ.



Task Definition

Task: Generation of long, coherent and grammatically 
correct wrong options given a triplet <article, question, 
correct answer>.
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Distractor Generation: The task of generating 
incorrect options for reading comprehension MCQ.



Considerations while generating distractors
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Generated distractors

● Should be in the context of the question
● Should be semantically related to the answer 

● Should not be semantically equivalent to the answer
● Should not be exactly same with each other
● Should not be very different from each other.

● Generate all distractors simultaneously



Applications:
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1. The distractor generation system can be utilized for 
educational purposes in language learning assessment

2. As reverse task, the system can also be used to 
automatically create annotated datasets to push research 
in reading comprehension and Q&A systems [1]

3. The variant of the proposed model can be used to generate 
different utterances in conversational systems



Problems with Existing Approaches:
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1. Existing methods use Jaccard similarity over a pool of 
candidate distractors to sample the distractors. 
○ This often makes the generated distractors too obvious 

or not relevant to the question context [2].

2. Some approaches did not consider the answer in the model.
○ This caused the generated distractors to be either 

answer-revealing or semantically equivalent to the 
answer [3].



Imitating Human Approach:
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Two step approach:

1. Search for article sentences that are in context with the 
question

2. Avoid sentences which are semantically equivalent to the 
answer. 

The resultant sentences are potential candidates for distractor 
generation.



Our Contribution:
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1. We propose a novel Hierarchical Multi-Decoder Network 
(HMD-Net) to tackle the task of automated distractor generation

2. We release a new high-quality distractor generation dataset 
RACE++ DG prepared from RACE++ dataset by leveraging 
contextual similarities

3. We introduce a novel dis-similarity loss in HMD-Net for
distractor generation and a new BERT [4] cosine similarity 
(BERT-CS) based metric for automated evaluation.



Problem Statement:

 

9

Our aim to generate D1 , D2 and D3 given the triplet <S, Q, A> 

Where,           is ond     conditional log-likelihood of ith distractor  



Architectural Diagram of HMD-Net:

 

10



Distractor Hierarchical Encoder:
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Input:  Triplet <article, question, answer> 
Output: Article sentence representation, Each token representation 
of components of triplet,  and softsel matching score (SSMS)

Steps:
         1.  Softsel operation [4] for Evidence Encoding
         2.  Average pooling (AP)
         3.  Gated Contextual Representation(RCR) [4] 
         4.  Softsel Matching Score     



Softsel Operations:

Three Steps:

1. Cartesian Similarity: It is obtained for given two input sequences h1 and h2 across 
all possible states (i.e. token’s representation)

2. Row-wise Softmax: Applied softmax over rows of cartesian similarity scores.

3. Weighted Sum: A weighted sum of second sequence h2 is encoded at given state of 
first sequence h1. For given state of first sequence this representation encodes the 
most influential parts of the second sequence.
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1. It encodes the most relevant aspects of a 
sequence to another sequence.

2. The input to SoftSel operation are two 
sequences, and output is an encoded 
sequence Here, h1 and h2 are input sequence. For example h1 

can be sequence of question tokens 
representation 



Encoder Flow Diagram:
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Softsel Matching Score:
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● We used three evidence encoding representations for answer and 
one for question to ensure that the generated distractors should 
not be semantically equivalent to the answer

● mi is score for ith sentence of the article which indicate that how 
potential ith sentence is for distractor generation   
 



Distractor Hierarchical Multi-Decoder:
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1. Input: SSMS and article
2. Output: Three distractors  
3. Utilized hierarchical articale sentence 

representation 

Question Context Initialization: 
1. Used a separate uni-directional LSTM 

layer to encode the question
2. Use the last token of question i.e., qlast
3. Employed final cell state and hidden state 

of LSTM to initialize each decoder
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1. For given decoder, the learned and penalise the attention scores 
for other decoders. For example attention equation for decoder 
three is:
  
                    att3 = att3 - (λ1 * att1) - (λ2 * att2)

2. Used three attention scores
       i).      α: standard word-attention scores
       ii).   β: Sentence attention score
       iii).  η: SSMS

        final attention score 

    



Dis-Similarity Function [3]:
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1. Feed ground truth distractor to uni-directional LSTM and find last hidden state hgt
2. Collected the last hidden state representation from each decoder i.e. hd1, hd2 and hd3
3. Find a cosine similarity score

                              dsi  = cos(hgt, hdi)

Training Loss:



Datasets:
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1. Used two datasets: RACE DG [2] and RACE ++ DG
2. RACE DG was available where RACE++ DG has been prepared by us
3. RACE++ DG preparation Steps
      i).   Removed distractors like distractors like ’all of the above,’
              ‘option a and option b are correct, etc.
        ii).  Distractor, question, and answer should have a minimum
              length of three.
        iii). Removed questions with fill in the blanks are at the beginning or in
               the middle of the question.
        iv). Used BERT cosine similarity 
               to  extract semantically relevant
               triplet and distractors

        



Sample Data Records (From RACE DG):
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Methods Compared :
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1. Sequence-to-sequence [6] model
2. Hierarchical to Encode-Decoder (HRED) model [7]
3. Hierarchical Static Attention (HSA) model [2]
4. Hierarchical Co-Attention (HCA) model [3]
5. Static Attn + Multi-Decoder (SMD) model 
6. Encoder of HMD-Net + Decoder of HSA (EHMD+DHSA) model

Note: Three other models are implemented by adding linguistic 
features (LF) and BERT
1. HMD-Net+LF
2. HMD-Net+BERT
3. EHMD+DHSA+BERT



Evaluation Metrics :
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Automatic Evaluation Metrics

1. BLEU 1-4 [8]
2. ROUGE-L [9]
3. METEOR [10]
4. Embedding Average [11]
5. Greedy Match [12]
6. Vector Extrema Score [13]
7. BERT-CS

Manual Evaluation Metrics

1. Comparative Study
2. Quantitative Study

i). Grammatical Correctness
(how grammatically correct the 
distractors are?)
ii). Distractibility (how confusing 
the distractors are?)



Automatic Evaluation Results (on RACE DG) :
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Automatic Evaluation Results (on RACE++ DG) :
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Manual Evaluation Approach:
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1. Comparative Study: Which of the proposed models is performing 
the best?

 i).  30 annotators, 3 annotator-sets (each size 10), and 120 questions
       from 40 articles (three questions from each article)
 ii).  Along with article and question four model outputs are given (SMD,
       HMD-Net, HMD-Net+LF, and HMD-Net+BERT )
 iii). Annotators to select the most closest distractible answer

2. Quantitative Study: What is the quality of the generated text?
       i). Considered large evaluation dataset over six models
        ii). 14 annotators, 2 annotator-sets (each size 7), and 350 questions

       from 117 articles (approx three questions from each article)
iii). Models are:  SMD, HMD-Net, HMD-Net+LF, EHMD+DSHA,
      EHMD+DSHA+BERT and HMD-Net+BERT
iv). Rate grammatical correctness and distractibility on scale of 1-5 (1 is 
      very bad and 5 is very good) 



Manual Evaluation Results:
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Comparative Study Results

Quantitative Study Results



Model Components and Output Verifications
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Ablation Study Results

Inter-distractor Similarity Test



27

Case Study: Demo



Conclusion and Future Work
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We presented a data driven approach to generate long and 
high-quality distractors for reading comprehension MCQ. We 
exploited the rich interaction among question, answer and passage 
using SoftSel operation and Gated Mechanism at the encoder side 
and used three separate decoder in the decoder side. 

In future, we will develop an approach where any number of 
in-context and non-answer- revealing distractors can be generated 
using a single decoder.
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