SELECTNOISE: Unsupervised Noise Injection to Enable Zero-Shot Machine
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Introduction

e There are 7000+ languages (Ethnologue), with only 300 languages having a presence in

Wikipedia

e Majority of NLP research focuses on English [1, 2] only - less inclusive and less diverse

e Large number of languages lack parallel data, have limited monolingual data, no represen-
tations 1n existing multilingual PLMs called Extremely Low Resource Languages (ELRLSs)

Motivation

e Hopeful Direction: Many ELRLs are lexically similar to some HRLSs due to dialectal vari-
ations, vocabulary sharing, and geographical proximity. For example, Bhojpuri (ELRL) 1s
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lexically very similar to Hindi (HRL).
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e Utilize surface-level lexical similarity in generative modeling

* Noise Injection 1s a promising direction. For example, Random Noise Injection [3] explored

for NLU task. However, 1t may be suboptimal for NLG tasks.

* Noising strategy should be systematic and incorporate linguistic signals.
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Problem Statement

Machine Translation (MT) from ELRLs — English in the zero-shot setting

Methodology: SELECTNOISE

 Selective Character Noise injection 1s performed in the source side (HRL) of HRL to En-

glish parallel data. It acts as proxy parallel training data for ELRL — English MT task.

* The noise injection acts as a regularizer, which accounts for lexical variations between HRL

and LRLs. This improves the lexical similarity and cross-lingual transfer.

* We proposed a noise injection approach, SELECTNOISE, that 1s unsupervised, systematic

and linguistically inspired.

e In SELECTNOISE, noise injection candidates are extracted with BPE merge operations and

edit operations (called selective noise) in an unsupervised way.

e Noise 1s 1njected with sampling algorithm: greedy, top-k, and top-p.

Experimental Setup
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e Utilized ~ 1000 examples from the monolingual corpus of each ELRL in SELECTNOISE
 Noise injection percentage of 5-10%

e Zero-shot setting: Training only on proxy HRL parallel data and evaluating with unseen
ELRLs
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I am watching TV The studies of scientists are beautiful
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BPE Merge operations and extractions of edit-

operations
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Results
Models Indo-Aryan Romance Average
Bho Hne San Mai Mag Awa Npi Kas Cat Glg Ast Oci
Vanilla NMT 40.3 46.8 223 400 493 476 296 213  33.0 41.0 40.7 33.0  37.08
Word-drop 305 472 21.8 406 490 476 286 206 | 37.6 436 434 36.0 37.96
BPE-drop 30.1 46.8 226 404 48.7 46.7 29.2 21.1 | 33.8 41.7 415 33.0 | 37.05
SwitchOut 36.1 43.2 20.1 382 456 427 283 188 | 290 349 349 29.1 | 3341
OBPE 413 475 234 41.8 504 497 30.5 21.1 | 341 412 413 33.8 | 38.00
BPE-Dropout 308 474 225 399 496 477 293 212 | 332 408 414 33.0 | 37.15
Random Char Noise 409 484 238 408 500 475 312 219 409 46.1 464 38.2 @ 39.68
SELECTNOISE Model
SELECTNOISE + Greedy| 42.1 51.0 252 434 51.7 49.9 334 237 42.0 471 474 385 | 41.28
SELECTNOISE + Top-k | 424 499 26.0 430 51.0 488 334 233 415 471 478 385 | 41.06
SELECTNOISE + Top-p | 42.0 49.6 24.1 424 50.6 488 33.6 233  41.6 471 475 38.8 | 40.78
Supervised Noise Injection Model
Selective noise + Greedy | 41.4 49.1 254 422 50.1 48.7 329 222 | 41.6 472 4777 38.7 40.60
Selective noise + Top-k | 41.7 493 263 433 50.8 48.7 342 236 419 468 475 387 | 41.10
Selective noise + Top-p | 414 499 273 433 51.6 489 339 234 | 41.6 477 48.2 39.0  41.35

Zero-shot chrF scores for ELRLs — English

Analysis: Language Similarity vs. Performance
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* We propose a novel SELECTNOISE that incorporates linguistics driven noise injection ap-
proach to improve zero-shot ELRLs — English.
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Conclusions

* In the future, we will extend this study to more NLG tasks and languages.
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