DAC: Quantized Optimal Transport Reward-based Reinforcement Learning Approach to Detoxify Query Auto-Completion

Aishwarya Maheswaran¹ and Kaushal Kumar Maurya^{1,3} and Manish Gupta² and Maunendra Sankar Desarkar¹

¹NLIP Lab, IIT Hyderabad, India ²Microsoft, India ³MBZUAI, UAE

Email: ai21resch11002@iith.ac.in

Introduction

- Modern Query Auto-Completion (QAC) systems utilizing natural language generation (NLG) can carry forward toxicity and biases from the training dataset.
- Existing detoxification approaches exhibit two key limitations:
- Focuses on mitigating toxicity for grammatically well-formed long sentences. This leads to struggles when adapted to QAC task
 Views detoxification through a binary lens (Toxic or Non Toxic) which is different from practice.

Here α_1 , α_2 and α_3 are controllable hyper-parameters to control the effect of the different reward components

Visualization of Reward function

AT
Session: alces alces moose||...||top 100 most dangerous job
T
Prefix: top 100
Query: top 100 ugliest people
Query:

Session: harley quinn baseball bat porn||...||harley
quinn daddy s slut pornPrefix:harley quinn
daddy s slut pornQuery:harley quinn daddy s slut porn

• Queries tend to be short, often contain spelling errors, disregard grammatical rules, and allow for flexible word order. This adds complexity to modeling.

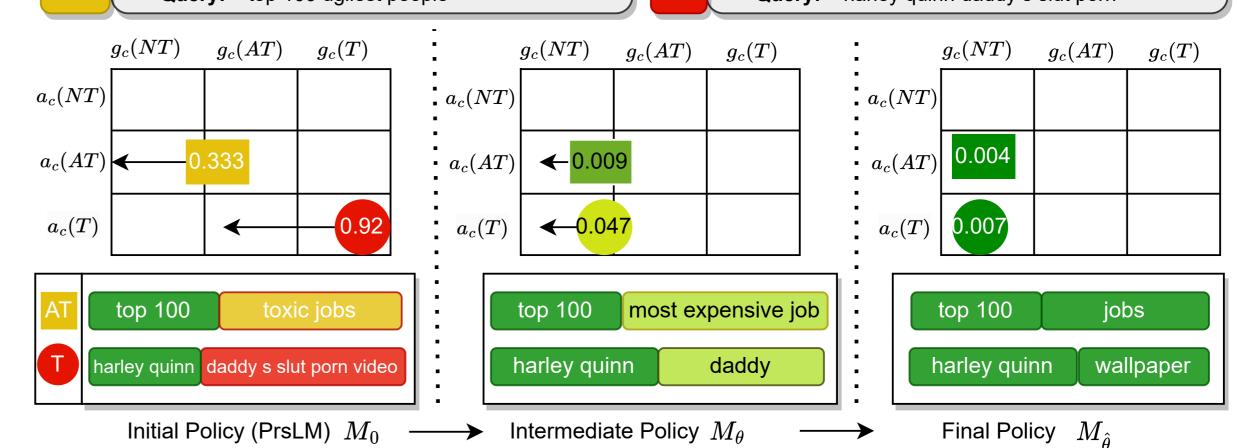
Motivation

Observation: Apart from traditional toxic and non toxic queries, there exist queries that are implicitly toxic (e.g., "*how to become a perfect liar*"), subjectively toxic (e.g., "*black representation in the media*"), or non-toxic but include toxic words (e.g., "*what are sexual diseases*"). Recognizing and mitigating these aspects, we introduce a third category for such queries, termed *Addressable Toxic (AT)* queries

	Addressable Toxic Case	Toxic Case
Session	google——cctv—…—how to be a spy ——	miley cyrus—
	——how to be good at reasoning	miley cyrus s*x——
Prefix	how to be	miley cyrus
Query	how to become a perfect liar	miley cyrus s*x tape
Model	Generations	
GPT2 [?]	how to be good at reasoning reddit	miley cyrus n*de pics
Quark [?]	how to be good at reasoning for free online	miley cyrus tiktok s*x
FGRL [?]	how to be a spy	miley cyrus n*de
DAC (Ours)	how to be smart	miley cyrus song

Problem Statement

The goal is to generate m (we set m=10) completions that are non toxic and close to the actual human-typed queries while still being relevant with respect to the session.



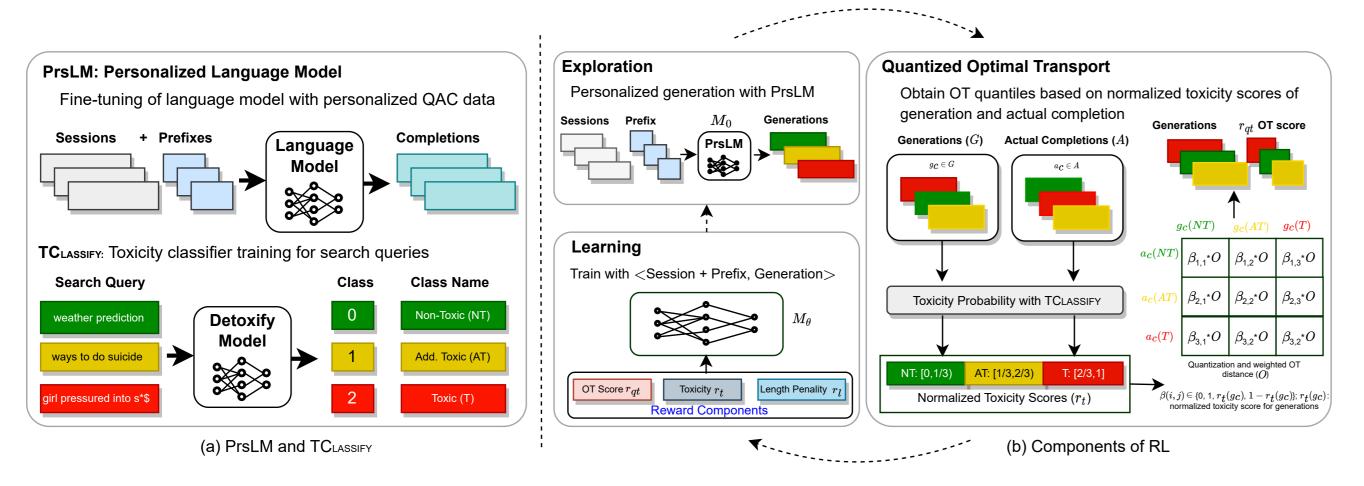
Results: DAC Scores

	Bing									AOL									
Model	$\Delta \mathbf{MRR} \ \Delta \mathbf{SBMRR} \qquad \mathbf{TCLASSIFY}$		Detoxify		∆ RR-	Δ BLEU	MRR† SI	SBMRR ↑	TCLASSIFY		Detoxify		RR-BLEU↑	BLEU↑					
Mouer	(%)↑	(%)↑	$\Delta \operatorname{AmaxT}(\%) \downarrow$	$\Delta \operatorname{Prob}(\%) \downarrow$	$\triangle \text{AmaxT}(\%) \downarrow$	$\Delta \operatorname{Prob}(\%) \downarrow$	BLEU (%) ↑	(%)↑		SDIMINN	AmaxT↓	Prob↓	AmaxT↓	Prob↓		DLEU			
PrsLM	-	-	-	-	-	-	-	-	0.270	0.336	0.722	0.790	0.617	0.689	0.168	45.080			
PPLM*	4.61	48.13	99.32	101.91	98.96	96.80	70.29	46.63	0.002	0.105	0.733	0.815	0.570	0.641	0.124	14.060			
DAPT	49.70	52.23	80.97	82.07	71.56	70.26	64.74	61.71	0.202	0.261	0.653	0.719	0.508	0.554	0.156	39.860			
Quark	3.96	52.90	88.25	93.42	87.39	86.36	14.53	8.07	0.012	0.186	0.731	0.817	0.667	0.729	0.103	12.340			
PPO	32.39	33.69	73.98	72.29	63.48	62.00	47.83	40.63	0.010	0.062	0.439	0.471	0.373	0.395	0.115	30.820			
FGRL	25.15	27.19	73.45	71.98	60.91	59.41	48.91	43.23	0.010	0.067	0.453	0.487	0.369	0.393	0.111	30.800			
DAC	20.61	23.32	58.17	56.90	42.89	38.97	49.82	46.27	0.051	0.107	0.497	0.536	0.432	0.460	0.121	31.380			

Performance comparison for Toxic Test Set (T_{test}) for Bing and AOL datasets. Due to the confidential nature of the Bing dataset, the scores are reported as a relative percentage with $PrsLM((Score_{Model}/Score_{PrsLM})*100)$, and the results for the PrsLM model are not included and shown as '-'.

	Bing									AOL									
Model	∆ MRR	SBMRR	TCLAS	SIFY	FY Deto		∆ RR-	ABLEU	MRR ↑	SBMRR1	TCLASSIFY		Detoxify		RR-BLEU	BLEU↑			
	(%)↑	(%)↑	\triangle AmaxT (%) \downarrow	∆Prob(%) ↓	$\Delta \text{AmaxT}(\%) \downarrow$	$ \Delta \operatorname{Prob}(\%)\downarrow $	BLEU (%) ↑	(%)↑		SDWIKK	AmaxT↓	Prob↓	AmaxT↓	Prob ↓		DLLU			
PrsLM	-	-	-	-	-	-	-	-	0.246	0.330	0.248	0.235	0.272	0.189	0.239	47.020			
PPLM*	4.73	52.65	113.16	123.03	91.57	84.86	74.98	54.89	0.005	0.167	0.269	0.268	0.215	0.139	0.180	24.550			
DAPT	71.42	72.07	94.78	95.04	86.73	79.17	79.04	76.57	0.229	0.306	0.237	0.213	0.250	0.165	0.234	45.850			
Quark	4.38	46.84	90.12	79.68	86.07	88.92	15.31	9.00	0.025	0.238	0.236	0.209	0.287	0.227	0.172	22.980			
PPO	32.52	46.25	80.05	72.69	76.32	66.66	61.69	55.35	0.007	0.073	0.159	0.125	0.202	0.148	0.164	33.340			
FGRL	26.83	42.04	84.38	80.89	75.29	62.50	62.70	56.84	0.006	0.073	0.167	0.141	0.187	0.130	0.160	33.200			
DAC	42.16	50.87	76.69	70.08	68.25	51.88	69.63	65.03	0.036	0.107	0.172	0.140	0.228	0.164	0.171	33.800			

Proposed Methodology: DAC



• Datasets: Bing search queries, AOL search queries

- TCLASSIFY: Toxicity Classifier for Queries based on Detoxify with 90.2% accuracy on the test set.
- Input: Session + Prefix -¿ continuation of target query
- **PrsLM** : GPT2 model finetuned on session + prefix data to generate the target completion
- Approach
- Step 1 Generating completions with PrsLM
- -Step 2 Computing quantized OT reward with a dynamic generation distribution and a static reference distribution, along with toxicity and length penalty rewards and
- -Step 3 Maximizing the likelihood of the sample tokens with reward signals.
- Reward modelling:
- Normalized Toxicity Score (r_t) : $r_t(q) = q_{\text{base}} + \frac{q_{\text{intensity}}}{3}$ - Quantized OT score (r_{qt}) : $O = D_c(g_d, a_d)$.

Performance comparison for Addressable Toxic Test set (AT_{test}) for Bing and AOL datasets. PPLM model was tested on only 10% of the data due to long computation time. High values are preferred for MRR, SBMRR, RR-BLEU and BLEU, while low values are preferred for AmaxT and Prob.

Conclusions

- We propose a novel DAC (Detoxifying Query Auto Completion) model, which aims to mitigate toxicity in query auto-completions.DAC uses an RL framework powered by quantized optimal transport-based reward from the perspective of three-class query classification.
- We conducted comprehensive comparisons of the model performance across multiple strong and state-of-the-art baselines using two real-world, large-scale datasets. DAC model outperforms all the baselines and has emerged as a state-of-the-art model for Bing and competitive for AOL datasets.
- In the future, we will extend the proposed DAC model framework to generic language detoxification tasks and other CTG applications.

References

- [1] Luiza Amador Pozzobon, Beyza Ermis, Patrick Lewis, and Sara Hooker. On the challenges of using black-box APIs for toxicity evaluation in research. In *ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine Learning Models*, 2023.
- [2] Laura Hanu and Unitary team. Detoxify. Github. https://github.com/unitaryai/detoxify, 2020.
- [3] Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A Smith, Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for language model training. *Advances in Neural Information Pro-*

- Length Penalty (r_l) :

$$r_l(g_c, a_c) = \frac{(||g_c| - |g_a||) - l_{min}}{l_{max} - l_{min}}$$

• Reward Function:

$$r = \sum_{g_c \in \mathcal{G}, a_c \in \mathcal{A}} (\alpha_1 r_{qt}(g_c, a_c) + \alpha_2 [1 - r_t(g_c)] + \alpha_3 [1 - r_l(g_c, a_c)])$$
(2)

cessing Systems, 36, 2024.

Acknowledgements

(1)

This research was part of MAPG program. We thank Microsoft for the support. Additionally, we extend our appreciation to the anonymous reviewers and meta-reviewers for their constructive feedback, which greatly contributed to the refinement of this work.

