# **CHARSPAN: Utilizing Lexical Similarity to Enable Zero-Shot Machine Translation for Extremely Low-resource Languages**





Kaushal Kumar Maurya<sup>1,3</sup> and Rahul Kejriwal<sup>2</sup> Maunendra Sankar Desarkar<sup>1</sup> and Anoop Kunchukuttan<sup>2</sup>

> <sup>1</sup>NLIP Lab, IIT Hyderabad, India <sup>2</sup>Microsoft, India <sup>3</sup>MBZUAI, UAE

PROCESSING LAB EACL 2024

Email: cs18resch11003@iith.ac.in

# Introduction

- Ethnologue list existence of over 7000 languages, but only around 300 languages has wikipedia articles.
- Most NLP research focuses on English only [1, 2] less inclusive and less diverse.
- Many languages lack parallel or monolingual data and are not represented in existing multilingual PLMs/LLMs, termed Extremely Low Resource Languages or ELRLs.
- ELRs are resource-constrained subsets of low-resource languages (LRLs).

- Selected Span: We have performed random 1-3 character span noise augmentation.
- Noise Augmentation Operations: span deletion and span insertion (n-gram character span is replaced with a single character).
- Model Training: No pre-trained LLMs, trained from scratch.
- Noise Injection Percentage: randomly augment 10-11% characters for each input sequence.
- Zero-shot Evaluation: Trained on proxy data and evaluated with unseen ELRLs.

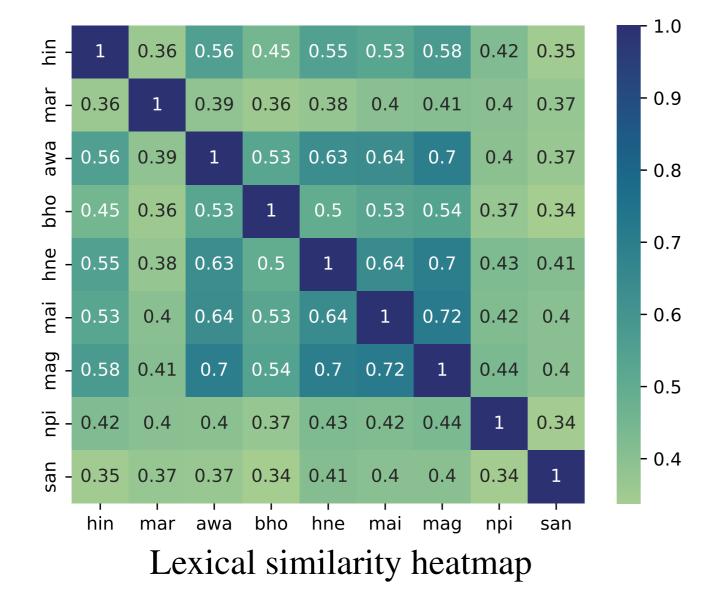
# **Motivation**

**Observation:** Many ELRLs are lexically similar to some high-resource languages (HRLs) due to dialectal variations, vocabulary sharing, and geographical proximity. For example, Bhojpuri (an ELRL) is lexically very similar to Hindi (an HRL).

> कनाडियन के खिलाफ नडाल का सीधा रिकॉर्ड 7-2 है। Hindi:

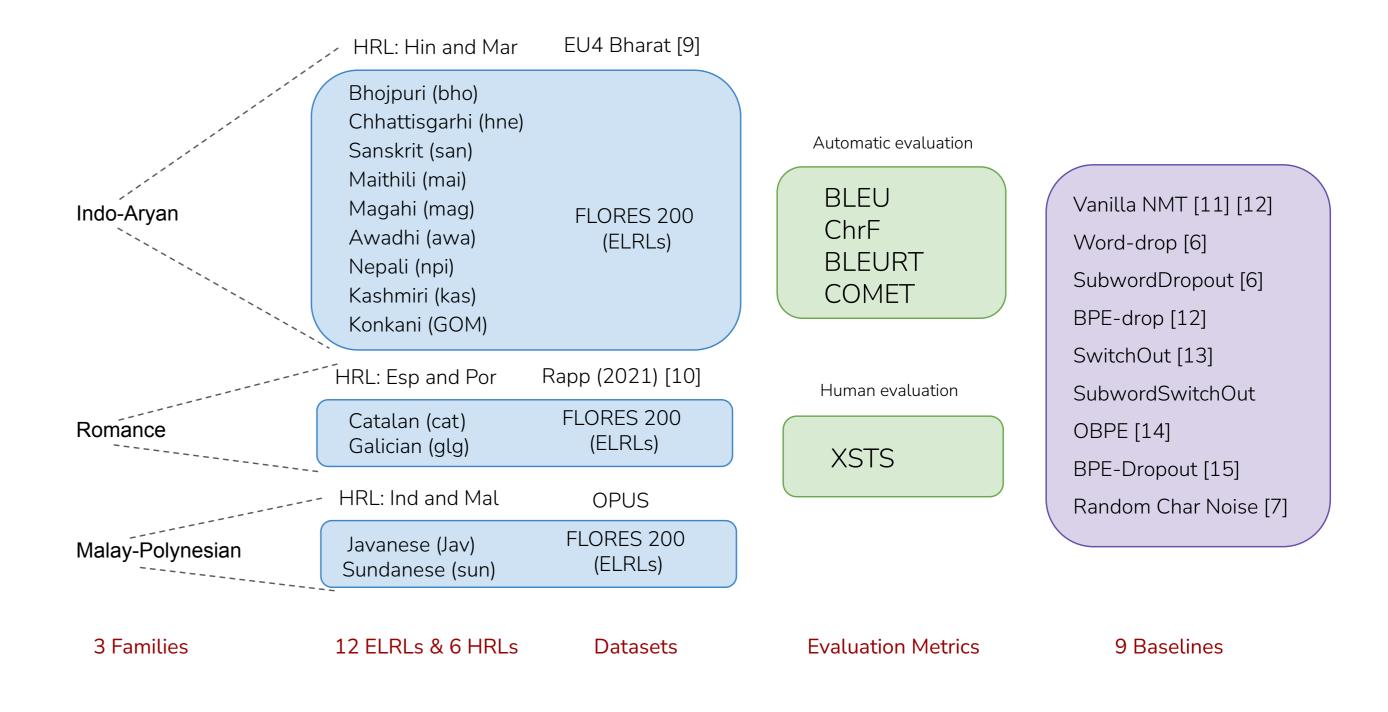
कनाडा के खिलाफ़ नाडाल के हेड-टू -हेड **रिकॉर्ड 7-2** के बा। Bhojpuri:

Lexical level similarity between Hindi and Bhojpuri languages



• Intuition: The noise injection acts as a regularizer, which accounts for lexical variations between HRL and LRLs. This improves the lexical similarity and cross-lingual transfer.

# **Experimental Setup**



# **Results: ChrF Scores**

| Models                                   | Indo-Aryan   |              |              |              |              |              | Romance      |              | Malay-Polynesian |       | Auonogo |       |         |
|------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------|-------|---------|-------|---------|
|                                          | Gom          | Bho          | Hne          | San          | Npi          | Mai          | Mag          | Awa          | Cat              | Glg   | Jav     | Sun   | Average |
| BPE*                                     | 26.75        | 39.75        | 46.57        | 27.97        | 30.84        | 39.79        | 48.08        | 46.28        | 33.32            | 53.75 | 31.44   | 32.21 | 38.06   |
| WordDropout                              | 27.01        | 39.57        | 46.19        | 28.13        | 31.91        | 40.31        | 47.37        | 46.48        | 34.20            | 52.21 | 32.03   | 32.52 | 38.16   |
| SubwordDropout                           | 27.91        | 40.11        | 46.26        | 29.46        | 32.56        | 40.99        | 47.91        | 47.43        | 35.09            | 52.28 | 33.38   | 33.47 | 38.90   |
| WordSwitchOut                            | 25.17        | 38.81        | 45.87        | 26.21        | 29.95        | 39.69        | 47.53        | 44.54        | 32.98            | 51.81 | 31.84   | 32.49 | 37.24   |
| SubwordSwitchOut                         | 26.08        | 38.84        | 45.84        | 28.19        | 30.81        | 40.19        | 47.28        | 45.93        | 33.26            | 53.71 | 31.24   | 32.06 | 37.78   |
| OBPE                                     | 27.90        | 40.57        | 47.46        | 28.52        | 31.99        | 40.71        | 49.10        | 47.16        | 32.33            | 52.77 | 29.98   | 30.88 | 38.28   |
| SDE                                      | 28.01        | 40.91        | 47.88        | 28.66        | 32.03        | 40.82        | 48.96        | 47.30        | 33.72            | 53.95 | 31.84   | 31.24 | 38.77   |
| BPE-Dropout*                             | 28.65        | 40.84        | 46.58        | 28.80        | 31.88        | 40.79        | 47.86        | 47.32        | 34.56            | 55.83 | 32.01   | 32.97 | 39.00   |
| unigram char-noise**                     | 28.85        | 42.53        | 49.35        | 29.80        | 34.61        | 42.67        | 50.97        | 49.43        | 43.16            | 54.81 | 35.42   | 36.69 | 41.52   |
| $BPE \rightarrow SpanNoise^{***} (ours)$ | 28.66        | 41.94        | 49.48        | 30.49        | 35.66        | 44.75        | 50.55        | 49.21        | 43.11            | 54.89 | 36.12   | 37.11 | 40.16   |
| CHARSPAN (ours)                          | 29.71        | 43.75        | 51.69        | <u>31.40</u> | 36.52        | 45.84        | 51.90        | 50.55        | 43.51            | 55.46 | 36.24   | 37.31 | 42.82   |
| CHARSPAN + BPE-Dropout (ours)            | <u>29.91</u> | <u>44.02</u> | <u>51.86</u> | 30.88        | <u>37.15</u> | <u>46.52</u> | <u>52.99</u> | <u>51.34</u> | <u>44.93</u>     | 55.87 | 36.97   | 38.09 | 43.37   |

#### **Potential Modeling Direction:**

- Utilize surface-level lexical similarity between HRLs and LRLs in the modeling.
- Noise augmentation is a plausible direction. Where noise is injected in HRL's training data which acts as augmented training data for ELRLs.
- The idea has been around; for example, random unigram noise augmentation (UNA) [3] was explored. This is limited to NLU tasks and suboptimal for NLG tasks.
- We hypothesize that existing methods do not work well for ELRLs which are lexically distant from HRLs.
- To overcome these limitations, we propose CHARSPAN, a character span-based noise augmentation model for machine translation (MT). The CHARSPAN model requires only HRLs' alphabet and is applicable for distant languages.

| HRL (HIN):<br>ENG: | इस सीज़न में बीमारी के <mark>शुरुआती</mark> मामले जुलाई के आखिर में सामने आए थे।<br>The initial cases of the disease this season were reported in late July. |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HRL (HIN)+CSN:     | ए_ सीज़न म बीमारी केप_ मामले जुलाई के आखिर म सामने आए _।                                                                                                     |
| ELRL1 (BHO):       | ए सीजन में ई बीमारी क पहिला मामला जुलाई क आखिर में सामने आ गइल रहले                                                                                          |
| ELRL2 (HNE):       | ए सीजन म ए बीमारी के पहिला मामला जुलाई के आखिर म सामने आए रहिस।                                                                                              |

#### **Problem Statement**

Machine Translation (MT) from ELRLs  $\rightarrow$  English in the *zero-shot* setting.

# **Proposed Methodology: CHARSPAN**

| Target HRL | Zero-shot Generation |
|------------|----------------------|
|            |                      |

CharSpan improvements over these baselines are statistically significant with \*(p < 0.0001), \*\*(p < 0.001), and \*\*\*(p < 0.05).

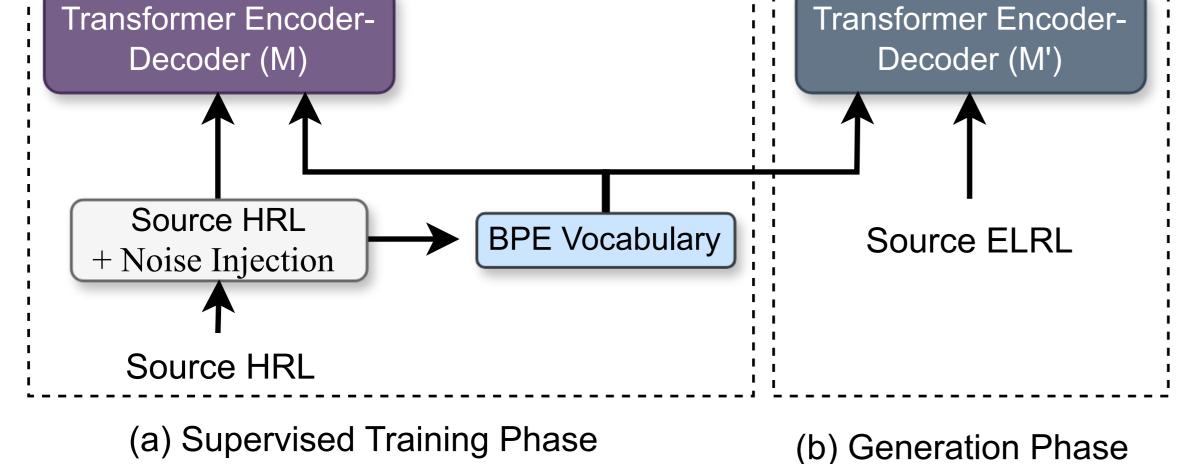
# **Analysis: Performance for Lexically Less Similar Languages**

| Languages | BPE   | <b>Unigram Noise</b> | <b>Char-Span Noise</b> | Sim  |
|-----------|-------|----------------------|------------------------|------|
| Gujarati  | 34.36 | 36.17                | 38.09                  | 0.42 |
| Punjabi   | 29.18 | 33.34                | 36.50                  | 0.40 |
| Bengali   | 25.35 | 28.42                | 30.28                  | 0.34 |
| Telugu    | 23.30 | 24.05                | 24.12                  | 0.27 |
| Tamil     | 13.81 | 13.69                | 14.40                  | 0.15 |

Zero-shot chrF scores; script conversion; HRL: Hindi and Marathi; Sim: lexical similarity.

# Conclusions

- We propose a novel CHARSPAN model based on character span noise augmentation to enable/improve zero-shot ELRLs  $\rightarrow$  English MT. We have achieved consistent improvement across different language families and datasets.
- In the future, we will extend this study to English  $\rightarrow$  ELRLs MT, other NLG tasks, and languages.



#### • Constraints: HRLs and LRLs should be closely related.

- Data Source: No monolingual or parallel data for ELRLs. Used only HRL's alphabets.
- Noise Augmentation: The character span noise is augmented in the source side (HRL) of HRL to English parallel data. It acts as a augmented training data for ELRL  $\rightarrow$  English MT task.

#### References

- [1] Emily M Bender. The# benderrule: On naming the languages we study and why it matters. *The Gradient*, 14, 2019.
- [2] Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika Bali, and Monojit Choudhury. The state and fate of linguistic diversity and inclusion in the NLP world. In *Proceedings of the* 58th Annual Meeting of the Association for Computational Linguistics, Online, 2020.
- [3] Noëmi Aepli and Rico Sennrich. Improving zero-shot cross-lingual transfer between closely related languages by injecting character-level noise. In Findings of Association for Computational Linguistics 2022, Dublin, Ireland, May 2022.

# Acknowledgements

This research was conducted during the first author's internship at Microsoft India. We thank Microsoft for the support. Additionally, we extend our appreciation to the anonymous reviewers and meta-reviewers for their constructive feedback, which greatly contributed to the refinement of this work.

