CHARSPAN: Utilizing Lexical Similarity to Enable Zero-Shot Machine

Translation for Extremely Low-resource Languages
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Introduction

e Ethnologue list existence of over 7000 languages, but only around 300 languges has
wikipedia articles.

e Most NLP research focuses on English only [1, 2] - less inclusive and less diverse.

 Many languages lack parallel or monolingual data and are not represented 1in existing mul-
tilingual PLMs/LLMs, termed Extremely Low Resource Languages or ELRLs.

* ELRs are resource-constrained subsets of low-resource languages (LRLs).

Motivation

Observation: Many ELRLs are lexically similar to some high-resource languages (HRLs)
due to dialectal variations, vocabulary sharing, and geographical proximity. For example,
Bhojpuri (an ELRL) 1s lexically very similar to Hindi (an HRL).

Hindi: HASIA &b RGP T8Td &1 JruT Repls 7-2 2

Bhojpuri:  ATST & fE@TE ATSTA & 28-¢ -88 Rebls 7-2 & 97|

Lexical level similarity between Hindi and Bhojpuri languages
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Lexical similarity heatmap

Potential Modeling Direction:
e Utilize surface-level lexical similarity between HRLs and LRLs in the modeling.

e Noise augmentation is a plausible direction. Where noise 1s injected in HRL’s training data
which acts as augmented training data for ELRLs.

* The 1dea has been around; for example, random unigram noise augmentation (UNA) [3]
was explored. This 1s limited to NLU tasks and suboptimal for NLG tasks.

 We hypothesize that existing methods do not work well for ELRLs which are lexically
distant from HRLs.

* To overcome these limitations, we propose CHARSPAN, a character span-based noise
augmentation model for machine translation (MT). The CHARSPAN model requires only
HRLs’ alphabet and 1s applicable for distant languages.

= TieH § dHRT & 3Tl AT JaTs P SRR H - 37T Y|

The initial cases of the disease this season were reported in late July.

HRL (HIN):
ENG:

HRL (HIN)+CSN: T USH A dHRI & U HHd Sdlg o HTRIR T H 37T _|

T YioH § § SR & Ufgdl Ardr odis & SRR J I 311 18d X8|
T Yo 4 T SHRY & ufgd ArHer Jdrs & 31ReR 7 gy 34E Y|

ELRL1 (BHO):

ELRL2 (HNE):

Problem Statement

Machine Translation (MT) from ELLRLLs — English in the zero-shot setting.

Proposed Methodology: CHARSPAN
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(a) Supervised Training Phase (b) Generation Phase

e Constraints: HRLs and LRLs should be closely related.
e Data Source: No monolingual or parallel data for ELRLs. Used only HRL’s alphabets.

* Noise Augmentation: The character span noise 1s augmented in the source side (HRL) of
HRL to English parallel data. It acts as a augmented training data for ELRL — English MT
task.

e Selected Span: We have performed random 1-3 character span noise augmentation.
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* Noise Augmentation Operations: span deletion and span insertion (n-gram character span
1s replaced with a single character).

e Model Training: No pre-trained LLMs, trained from scratch.

* Noise Injection Percentage: randomly augment 10-11% characters for each input se-

quence.

e Zero-shot Evaluation: Trained on proxy data and evaluated with unseen ELRLSs.

 Intuition: The noise 1njection acts as a regularizer, which accounts for lexical variations
between HRL and LRLs. This improves the lexical similarity and cross-lingual transfer.

Experimental Setup
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Malayiﬁélynesian Javanese (Jav) FLORES 200
________________ Sundanese (sun) (ELRLs)
3 Families 12 ELRLs & 6 HRLs Datasets Evaluation Metrics 9 Baselines
Results: ChrF Scores
Indo-Aryan Romance | 'Malay-Polynesian
Models Gom Bho Hne San Npi Mai Mag Awa Cat Glg | Jav Sun Average
BPE* 26.75 39.75 46.57 27.97 30.84 39.79 48.08 46.28 33.32 53.75 31.44 32.21 38.06
WordDropout 27.01 39.57 46.19 28.13 31.91 40.31 47.37 46.4834.20 52.21 32.03 32.52 38.16
SubwordDropout 27.91 40.11 46.26 29.46 32.56 40.99 4791 47.43/35.09 52.28 | 33.38 33.47 38.90
WordSwitchOut 25.17 38.81 45.87 26.21 29.95 39.69 47.53 44.54/32.98 51.81 31.84 32.49 37.24
SubwordSwitchOut 26.08 38.84 45.84 28.19 30.81 40.19 47.28 45.93/33.26 53.71 31.24 32.06 37.78
OBPE 27.90 40.57 47.46 28.52 31.99 40.71 49.10 47.16|32.33 52.77 | 29.98 30.88 38.28
SDE 28.01 40.91 47.88 28.66 32.03 40.82 48.96 47.3033.72 53.95 31.84 31.24 38.77
BPE-Dropout* 28.65 40.84 46.58 28.80 31.88 40.79 47.86 47.32/34.56 55.83|32.01 32.97 39.00
unigram char-noise** 28.85 42.53 49.35 29.80 34.61 42.67 50.97 49.43/43.16 54.81 | 35.42 36.69 41.52
BPE — SpanNoise*** (ours) 28.66 41.94 49.48 30.49 35.66 44.75 50.55 49.21/43.11 54.89 | 36.12 37.11 40.16
CHARSPAN (ours) 29.71 43.75 51.69 31.40 36.52 45.84 51.90 50.55 43.51 55.46 36.24 37.31 42.82
CHARSPAN + BPE-Dropout (ours) 29.91 44.02 51.86 30.88 37.15 46.52 52.99 51.34 44.93 55.87 36.97 38.09 43.37

Languages BPE Unigram Noise Char-Span Noise  Sim
Gujarati 34.36 36.17 38.09 0.42
Punjabi 29.18 33.34 36.50 0.40
Bengali 25.35 28.42 30.28 0.34
Telugu 23.30 24.05 24.12 0.27
Tamil 13.81 13.69 14.40 0.15

Conclusions

Analysis: Performance for Lexically Less Similar Languages

CharSpan improvements over these baselines are statistically significant with *(p < 0.0001),
**(p < 0.001), and *** (p < 0.05).

Zero-shot chrF scores; script conversion; HRL: Hindi and Marathi; Sim: lexical similarity.

* We propose a novel CHARSPAN model based on character span noise augmentation to en-
able/improve zero-shot ELRLs — English MT. We have achieved consistent improvement
across different language families and datasets.

* In the future, we will extend this study to English — ELRLs MT, other NLG tasks, and
languages.
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