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Abstract. Recent Query Auto-completion (QAC) systems leverage natural lan-
guage generation or pre-trained language models (PLMs) to demonstrate remark-
able performance. However, these systems also suffer from biased and toxic com-
pletions. Efforts have been made to address language detoxification within PLMs
using controllable text generation (CTG) techniques, involving training with non-
toxic data and employing decoding time approaches. As the completions for QAC
systems are usually short, these existing CTG methods based on decoding and
training are not directly transferable. Towards these concerns, we propose the
first public QAC detoxification model, Detoxifying Query Auto-Completion (or
DQAC), which utilizes adapters in a CTG framework. DQAC operates on la-
tent representations with no additional overhead. It leverages two adapters for
toxic and non-toxic cases. During inference, we fuse these representations in a
controlled manner that guides the generation of query completions towards non-
toxicity. We evaluate toxicity levels in the generated completions across two real-
world datasets using two classifiers: a publicly available (Detoxify) and a search
query-specific classifier which we develop (QDETOXIFY). DQAC consistently
outperforms all existing baselines and emerges as a state-of-the-art model pro-
viding high quality and low toxicity. We make the code publicly available1.

Keywords: Auto-completion· Query Detoxification· Controllable Text Genera-
tion· Language Generation· Pre-trained Models· Adapters

1 Introduction
Query auto-completion (QAC) systems have become an integral part of modern search
engines, primarily enriching the user experience by providing potential query com-
pletions. Over the past several decades, there has been active research on QAC, en-
compassing traditional methodologies like log-based approaches [15], learning to rank-
based approaches [22], and many more [1]. However, more recently QAC systems have
demonstrated remarkable performance by leveraging state-of-the-art technologies such
as natural language generation (NLG) [4] and pre-trained language models (PLMs)
[13]. A notable challenge arises when these systems produce toxic completions, which
can be unexpected and potentially detrimental. The ramifications of encountering such
potentially harmful suggestions can be far-reaching, encompassing negative impacts
on user experience, erosion of trust in the search engine, and perpetuation of biases

* These authors contributed equally to this work
1 https://shorturl.at/zJ024
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in the training data. Toxicity in QAC refers to the presence of harmful, offensive, or
inappropriate suggestions that may appear during the automated recommendation of
completions of search queries [16]. This paper is a step towards mitigating/reducing
toxicity in query completions for QAC systems based on PLMs.

Traditionally blocklist of toxic words were used to avoid generating toxic sugges-
tions, the drawbacks of this approach are (1) the list needs to be constantly updated,
(2) mere presence of toxic words does not necessarily classify a query as toxic. Ex:
“deepfake daughter s*x” is toxic while “f*ck you knowledge lyrics” is non-toxic. Re-
cently, active efforts have been made to detoxify text generated using large pre-trained
language models. These efforts can be broadly categorized into three main approaches.
(1) Controlled text generation (CTG) through fine-tuning with clean datasets [5]. The
drawbacks of this approach relates to the difficulty in obtaining a clean dataset and the
need to retrain these models. (2) Decoding time algorithms for CTG [2, 10]. These algo-
rithms aim to modify the decoding process during generation to ensure that the output
aligns with desired constraints. The drawback of this approach is the increased time
during generations, which is not desirable for auto-complete settings. (3) Reinforce-
ment learning (RL) techniques to unlearn toxic content [12], by providing feedback in
the form of toxicity scores for generations. It is important to note that the aforemen-
tioned approaches have primarily been found to perform well in scenarios where the
input/prompt and completions are well-formed and longer in nature. Specific character-
istics of QAC datasets like comparatively shorter text length (due to nature of queries),
spelling and grammatical errors, hinder the adaptation of existing detoxification mod-
els for QAC systems as is. In Section 5 of our paper, we provide experimental and
quantitative evidence to support these claims, including Tables 1 and 2 for reference.

Towards these concerns, we propose a novel approach called DQAC: Detoxifying
Query Auto-Completion, which utilizes Adapters [8] in a CTG framework to reduce
toxicity in query auto-completion. It utilizes toxicity-aware adapter that steers the la-
tent state to generate non-toxic completions with lower parameters compared to fine-
tuning the entire model. Overall, our main contributions are as follows. (1) We introduce
DQAC which, to the best of our knowledge, is the first publicly available query detox-
ification model designed explicitly for Query Auto-completion systems. We compare
its performance on Bing and AOL datasets against several strong baselines. (2) We de-
velop a novel toxicity classifier model called QDETOXIFY to assess the toxicity level
of complete queries from QAC systems. It demonstrates a high accuracy rate of 96%.
(3) We introduce the first toxicity evaluation benchmark for QAC models, i.e., DQAC-
Benchmark, to stimulate further research within this domain. (4) We make the code and
models for AOL dataset publicly available1.

2 Related Work
Detoxification in QAC: Existing models for detoxifying QAC are limited to discovery
and detection approaches. Leading search engines typically manage toxicity by main-
taining a blocklist of offensive terms, engaging in red teaming, or soliciting users to
report objectionable completions. However, these methods need constant monitoring
and maintenance. Other techniques such as maintaining common query templates were
introduced to reduce these overheads, yet their coverage remains limited. Conversely,
learning-based approaches were explored using query embedding, active learning and
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machine learning for the detection and removal of toxic completions. Additionally, N-
strike rules were proposed to generate multiple completions and eliminate the toxic
ones. These approaches do not provide safe alternatives for blocking toxic content. we
address this drawback via our proposed DQAC model.
Detoxification with CTG: Initial methods for CTG were based on word filtering where
a specific set of words are disallowed during generation [3] which has scalability and
maintenance constraints. Fine-tuning the NLG (PLM) models with desirable attribute
datasets (i.e., non-toxic) [5] can steer generation towards desirable attributes, but the
model does not learn how to handle toxic cases. Another popular approach is to alter
the generation strategy called Decoding time approaches. Dathathri et al. [2] propose
PPLM which uses an attribute model to get gradients with respect to the desired class
and updates the hidden representations of the PLM. This method is computationally
expensive, as shown in [3], which makes its deployment unfavorable. Close to our work,
Liu et al. [10] proposed the DExperts model, which uses a base PLM along with two
additional fine-tuned LMs, to learn desirable and undesirable attributes. This is again
computationally expensive and requires larger memory footprint. Unlike this, DQAC is
efficient by having 3× less number of parameters and fine-tuning latency. Recently, Lu
et al. [12] proposed an RL-based approach for CTG called Quark. It is trained using
an RL approach with iteration sampling, quantization steps and the reward function
as toxicity score. However, for QAC detoxification task, we found it to be ineffective
due to the unstructured and short nature of queries. Our proposed model is specifically
designed to operate at the latent representation level, employing adapters, and exhibits
improved performance when handling short prefixes and completions.
Text Generation with Adapters: Adapters [8] are lightweight (consisting of a small
number of parameters) modules inserted into each layer of the PLM to adapt it to down-
stream task/domain/language. While training an adapter, all the parameters of the orig-
inal pre-trained LM are frozen to mitigate the effect of catastrophic forgetting [14].
These light-weight modules enable parameter-efficient training and significantly reduce
the fine-tuning computation cost [20]. Ustun et al. [21] used language-specific denoising
adapters for unsupervised machine translation tasks. We take inspiration from previous
studies and explore the application of adapters in CTG framework for QAC tasks.

3 Methodology
In this section, we first introduce the QAC detoxification problem, and subsequently
delve into the specifics of the proposed toxicity classifier model, i.e., QDETOXIFY.
Lastly, we furnish architectural details of the proposed DQAC model.

Problem Statement: The task of detoxifying QAC can be formulated as a controlled
text generation problem. A QAC system comprises of a triplet: ⟨session, prefix, com-
plete query2⟩. Here, the session s consists of the previous n queries (ordered from
earliest to latest) searched by the user. The current query being typed by the user is
represented as a complete query q, and p is the query prefix entered so far. Formally,
for a given input s and p, the goal is to generate m (we set m=10) completions that are
close to the actual human-generated queries and should be relevant with respect to the

2 also called as completion or query
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session. The completions should have desired behaviors (i.e., non-toxicity) and should
not have undesired behaviors (i.e., toxicity). The incorporation of session information
lends a personalization aspect to the model.

3.1 QDETOXIFY: Toxicity Classifier for Search Queries
The primary prerequisite for evaluating any detoxification model is a reliable evalua-
tion model that provides a numerical value capable of determining the toxicity level of
the generated text. Some well-known models are Perspective API [9], Detoxify [6] and
ToxiGen [7]. However, these models possess their own limitations and exhibit biases
[17], which restrict their usage, casting doubts on their reliability. None of these models
have been trained using any QAC datasets, which typically feature short and structurally
distinct text, highlighting the disparity. Further, since we work with a proprietary dataset
(Bing), we require an offline tool for evaluating toxicity. In response to these concerns,
we train a toxicity classifier specifically designed for QAC systems called QDETOX-
IFY. It generates a score ranging from 0 to 1, where a score ≥0.5 is considered toxic.
QDETOXIFY is developed by leveraging the publicly available Detoxify model. Detox-
ify model uses RoBERTa as the base pretrained model which is fine-tuned with the
Jigsaw dataset3, QDETOXIFY was trained using a labeled query log dataset from Bing
where each query is labeled as “toxic” or “non-toxic” using their proprietary classifiers.

The dataset comprises of ∼7.59M training, 100K validation, and 100K test exam-
ples. Each of these splits includes an equal number of both toxic and non-toxic samples.
The model was fine-tuned for 128 epochs using a learning rate of 2e-4. SGD optimizer
and cross-entropy loss were employed in the training process. This training strategy
allows QDETOXIFY to leverage the knowledge learned from Detoxify and RoBERTa,
through transfer learning on a diverse range of toxic and non-toxic texts.
Results: The proposed QDETOXIFY model achieves a high accuracy of 95.96% on
the test set, while the corresponding score for Detoxify is just 82.82%. There exists a
high correlation of 0.797 between QDETOXIFY and Detoxify, supporting the hypothe-
sis that QDETOXIFY effectively leverages the learning acquired from Detoxify. A query
‘m.i.c.r.o.s.o.f.t.’ is rated as toxic by Detoxify (score=0.58) where QDETOXIFY cor-
rectly classified it as non-toxic (score=0.23). Based on these findings, we conclude that
QDETOXIFY is an accurate and reliable evaluation model for measuring the toxicity of
search queries.

3.2 The DQAC Model
The proposed DQAC model is based on natural language generation using Transformer-
based pre-trained language models.
DQAC Model Architecture: Fig. 1 shows the details of the proposed DQAC model.
The model architecture is based on personalized pre-trained language models which
is obtained by fine-tuning the base PLM using a large personalized auto-completion
dataset. We will refer to this model as PrsGPT2. The personalized auto-completion
dataset consists of session and prefixes as input and completions as the target. Further,
two trainable adapters, i.e., non-toxic (A+) and toxic (A−), are added at each trans-
former layer (after feed-forward neural network sub-layer) of the personalized PLM in
parallel. The representation from the feed-forward neural network sub-layer output is

3 https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification
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Fig. 1: DQAC model details: (left) training (right) inference. Here MSA is Multi-head
Self-attention and FFN is Feed Forward Network.

passed through non-toxic and toxic adapters in parallel to shift the hidden represen-
tations towards specific desirable and undesirable behaviors, respectively. Finally, the
hidden representations from two adapters and base LM are fused in a controlled man-
ner such that the final fused representation is inclined towards expert attribute behaviors,
which is fed as input to the next layer.

Formally, an adapter Ai (A+
i /A−

i ) at layer i consists of layer-normalization (LN),
followed by down-projection Wdown ∈ Rk×d with bottleneck dimension d, non-linear
activation ReLU and up projection Wup ∈ Rd×k combined with input hi ∈ Rk through
residual connection, where k is the transformer’s hidden layer dimension. Overall,
adapter Ai outputs Ai(h

i) = WT
upReLU(WT

downLN(hi)) + hi. Bias terms are omitted
for clarity. As adapters add only a small number of additional parameters, the gener-
ated text consists of desirable behavior and at the same time has comparable number of
parameters to the personalized PLM. This modeling also enables an easy adaptation to
different domains and languages.

Text Generation with DQAC: At decoding time step t, given an input session+prefix
Xt, the personalized PLM computes hidden representation hi

t at i-th layer. DQAC al-
ters this representation by passing it through the adapter modules, and then performing
representation fusion, to obtain the final representation zit. In particular, hi

t is passed
through non-toxic and toxic adapters to get output representations ri+t = A+

i (h
i
t) and

ri−t = A−
i (h

i
t), respectively. These outputs are then fused to obtain the controlled out-

put representation as given in Equation 1. The fusion tries to steer the representation
towards the output of the non-toxic adapter, and away from the representation generated
by the toxic adapter, thereby attempting to bias the model towards non-toxic generation.

zit = hi
t + α(ri+t − ri−t ) (1)

where α is a hyper-parameter that controls the amount of steering over the base lan-
guage model. The next token xt+1 is obtained with the standard language model de-
coding approach. We use beam search decoding to generate 10 completions.
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Overall DQAC Model Training: The DQAC model undergoes training in three dis-
tinct stages. First, the model is trained to incorporate personalized context by fine-tuning
the PLM known as the personalized PLM (PrsGPT2). The second stage involves train-
ing the toxic adapter while freezing the rest of the model parameters including non-
toxic adapters with an annotated toxic QAC dataset. Finally, the third stage focuses
on training the non-toxic adapter while freezing the rest of the model parameters in-
cluding toxic adapters with an annotated non-toxic QAC dataset. For our experiments,
we use GPT2 as the base PLM, while noting that the proposed framework is agnostic
of the PLM choice. The order of the adapter training does not have a major impact
on model performance as both the adapters work in parallel. Formally, we train the
adapters A (A+/A−) to minimize the following loss.

LA = −
∑

S∈DA

logP (qc|s; p;A) (2)

where S is a sample in adapter-specific dataset DA which consists of session s, prefix
p and completion qc.

Although the proposed approach seems similar to DExperts, it differs in the follow-
ing novel ways: (1) It operates in the latent representation space, which is more suitable
for reducing toxicity for QAC systems (more discussion in result section 5), (2) It does
not have additional latency overhead like DExperts during generation which is crucial
for the QAC systems and (3) The proposed model more efficient as DExperts takes ∼3x
more RAM (∼3x number of model parameters) compared to DQAC.

4 Experimental Setup
We seek to answer the following set of questions: (1) How to create a reliable evalua-
tion benchmark for QAC toxicity evaluation? (2) What is the performance of existing
state-of-the-art models for the QAC detoxification task? (3) How does the performance
of the proposed DQAC model compare to these state-of-the-art baselines? (4) Does the
performance of the DQAC model persist across different datasets and test set types?

Details of Datasets: We use two datasets to train and evaluate the model performance,
i.e., Bing proprietary query log and AOL public query log datasets. The raw Bing data
consists of three week worth user query log from October 2022. It was preprocessed
to resemble AOL data format. Unlike AOL, the session and prefix were part of the
dataset and hence no additional preparation was done. This makes the Bing dataset
recent and a real user query log dataset. The training of the DQAC model requires two
types of data: (1) PQAC-Data: a large-scale personalized query auto-complete training
dataset to train base PLM (GPT2) to obtain personalized PLM (PrsGPT2) as discussed
in Sec. 3.2 and (2) Adapter-Data: small toxic and non-toxic labeled datasets to train
toxic and non-toxic adapters of DQAC model, respectively. PQAC-Data is obtained
from Bing/AOL; however, Adapter-Data is obtained from Bing only. For both Bing and
AOL, personalized QAC data is split temporally into train, validation and test such that
train data is oldest and test data is the most recent. We call the train and validation parts
together as PQAC-Data. The test part is referred to as DQAC-Benchmark (which is
discussed in detail in Sec. 4). PQAC-Data and Adapter-Data are disjoint.

The raw AOL query log consists of a sequence of queries entered by users along
with time-stamp details. Following previous studies [23], we split sequence of queries
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into sessions with at least 30 minutes of idle time between two consecutive queries
while ensuring each session has at least two queries (in earliest to latest order), i.e.,
s = (q1, q2, . . . , qnqn+1). The prefix pn+1 is sampled from the last query qn+1 us-
ing exponential distribution to create triplet ⟨(q1, q2, . . . qn), pn+1, qn+1⟩ for each of
the PQAC-Data example. Unlike the AOL dataset, where the prefix-to-query informa-
tion is not explicitly available, and the prefixes are synthetically created by splitting a
full query, the Bing dataset consists of real prefixes typed by users. We perform three
pre-processing steps while preparing Bing PQAC-Data: (1) Restricting the maximum
prefix length to 25 characters so that the model learns to predict for short queries. (2)
We ensure the complete query is prefix-preserving by removing non-prefix-preserving
examples. (2) We also verify that the query does not start with punctuation or numbers
and has only ASCII characters. Adapter-Data is prepared from the Bing query log and
has a similar triplet format as PQAC-Data. It consists of two labeled datasets, toxic
and non-toxic, to train toxic and non-toxic adapters, respectively. For the Bing dataset
PQAC-Data consists of 20M for training and 101K for validation while AOL datasets
had 4M for training and 100K for validation. For training Adapters, 40K toxic and non
toxic sets from Bing dataset were used.
Creation of Toxicity Evaluation Benchmark: To evaluate any detoxification model a
reliable evaluation benchmark is required. Due to the lack of a public evaluation bench-
mark, we have created the first toxicity evaluation benchmark for QAC task: DQAC-
Benchmark. The benchmark consists of two types of evaluation datasets: non-toxic
prefix and non-toxic query completions (NPNQ) and non-toxic prefix and toxic query
completions (NPTQ). To construct these sets, we obtained toxicity scores using both
QDETOXIFY and Detoxify for prefixes and queries (excluding sessions). We use aver-
age of both classifier scores to enhance the reliability of the dataset. NPNQ is a set of all
examples where the toxicity score for prefix and query is <0.5 separately. On this set,
we hypothesize that the QAC detoxification model should preserve exact completions
while steering towards non-toxicity. NPTQ is a set of all examples where the toxic-
ity score for prefix <0.5 and the score for query is ≥0.5. On this set, we hypothesize
that the detoxification model should steer towards non-toxic completion while ensur-
ing that the completions remain contextually aligned with the session and prefix, rather
than necessarily matching the correct completions. For Bing datasets the size for both
NPNQ and NPTQ is 30K, and for AOL NPNQ is 10K while NPTQ is 8.6K.
Baselines: This section provides an overview of the baseline models considered for
comparison with the DQAC model. As our target is to develop a detoxification model
for QAC, a comparison with regular QAC models is not required. Due to a lack of pub-
lic detoxification models for QAC, to ensure fairness, we have selected state-of-the-art
language detoxification NLG models from the natural language processing (NLP) com-
munity. For fair comparison, all the baselines are developed on top of the Personalized
GPT2 model.

– Personalized GPT2 (PrsGPT2): We fine-tune the GPT2 model with PQAC-Data for
3 epochs to obtain PrsGPT2 base model. We separately fine-tune for Bing and AOL
PQAC-Data datasets.

– DAPT [5]: We continued fine-tuning PrsGPT2 with ∼4M non-toxic queries for which
QDETOXIFY classifier scores are <0.5.
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Bing consolidated (NPNQ ∪ NPTQ)

Model ∆MRR ∆SBMRR QDETOXIFY Detoxify ∆RR- ∆BLEU
(%)↑ (%)↑ ∆AmaxT (%)↓ ∆Prob(%)↓ ∆AmaxT(%)↓ ∆Prob(%)↓ BLEU (%)↑ (%)↑

B
as

el
in

es
PrsGPT2 - - - - - - - -
PPLM* 0.45 10.87 144.37 152.15 91.46 89.40 40.23 15.01
DAPT 77.07 70.24 81.28 80.42 60.92 52.37 68.97 57.14
Quark 10.68 21.89 68.77 65.13 29.39 20.57 40.23 24.13
DExpert 16.13 18.60 33.33 28.67 19.21 13.61 46.26 23.11

O
ur

s T Adapter 21.20 27.47 38.70 29.26 25.62 13.92 43.39 41.75
NT Adapter 95.87 91.85 91.90 89.55 72.58 71.36 84.77 85.24
DQAC 43.03 39.91 30.34 21.19 9.36 3.28 48.28 39.55

AOL consolidated (NPNQ ∪ NPTQ)

Model MRR SBMRR QDETOXIFY Detoxify RR- BLEU
↑ ↑ AmaxT↓ Prob↓ AmaxT↓ Prob↓ BLEU↑ ↑

B
as

el
in

es

PrsGPT2 0.34 0.40 0.54 0.53 0.31 0.33 0.14 46.63
PPLM* 0.00 0.05 0.70 0.71 0.26 0.26 0.06 8.45
GeDi 0.00 0.02 0.44 0.43 0.16 0.14 0.07 20.20
DAPT 0.13 0.19 0.37 0.35 0.20 0.19 0.09 32.40
Quark 0.32 0.39 0.54 0.54 0.28 0.30 0.14 46.21
DExpert 0.00 0.02 0.28 0.25 0.08 0.04 0.07 22.25

O
ur

s T Adapter 0.06 0.13 0.28 0.24 0.09 0.05 0.08 27.64
NT Adapter 0.01 0.09 0.52 0.51 0.26 0.27 0.06 7.44
DQAC 0.08 0.14 0.21 0.18 0.07 0.04 0.08 30.67

Table 1: The consolidated average evaluation scores for Bing and AOL datasets, aver-
aged across NPNQ and NPTQ test sets. “AmaxT” represents average maximum toxi-
city, and “Prob” denotes the toxicity probability. *Similar to [10], PPLM model was
tested on 10% data. PrsGPT2 scores are not shown for Bing since the relative percent-
age (SModel ∗ 100/SPrsGPT2) is computed with PrsGPT2. For AOL, we have reported
raw scores.

Bing - NPTQ

Model ∆MRR ∆SBMRR QDETOXIFY Detoxify ∆RR- ∆BLEU
(%)↑ (%)↑ ∆AmaxT (%)↓ ∆Prob(%)↓ ∆AmaxT(%)↓ ∆Prob(%)↓ BLEU (%)↑ (%)↑

B
as

el
in

es

PrsGPT2 - - - - - - - -
PPLM* 0.19 13.64 113.99 115.95 89.67 87.78 34.55 18.09
GeDi 0.05 0.65 85.88 84.83 95.27 86.01 27.27 13.83
DAPT 34.11 35.71 80.44 80.80 56.39 50.64 55.91 44.85
Quark 3.27 6.82 56.09 53.57 24.69 19.13 34.55 22.94
DExpert 0.37 1.62 35.49 32.24 18.56 13.67 30.00 15.43

O
ur

s T Adapter 70.56 70.46 85.62 83.92 72.68 71.54 73.64 70.09
NT Adapter 0.37 0.33 38.73 31.65 19.44 12.38 35.00 26.68
DQAC 0.05 1.62 29.73 22.78 5.43 3.01 30.00 16.35

Bing - NPNQ

B
as

el
in

es

PrsGPT2 - - - - - - - -
PPLM* 0.63 8.70 275.42 354.35 118.42 190.00 50.00 10.93
GeDi 16.04 25.06 110.62 132.61 47.37 20.00 69.53 35.33
DAPT 105.98 97.44 84.92 78.26 128.95 160.00 91.41 73.44
Quark 15.66 33.76 123.46 129.71 100.00 110.00 50.00 25.70
DExpert 26.73 31.97 24.02 8.70 28.95 10.00 74.22 33.28

O
ur

s T Adapter 112.89 108.70 118.99 121.01 71.05 60.00 103.91 105.32
NT Adapter 35.22 48.85 38.55 15.94 118.42 110.00 57.81 61.72
DQAC 71.95 70.08 32.96 12.32 68.42 20.00 79.69 70.31

Table 2: Model performance for NPTQ and NPNQ testset for Bing dataset. Rest of the
notations are similar to Table 1.
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– PPLM [2]: As implemented in the paper, we train a discriminator that learns to classify
the hidden representation of the base PrsGPT2 model as toxic or non-toxic, using the
80K Adapter-Data.

– DExperts [10]: We use the base model as the PrsGPT2 checkpoint and train the expert
and anti-expert models on the 40K toxic and non-toxic data splits.

– Quark [12]: We use QDETOXIFY score as a reward and base PLM as PrsGPT2. Similar
to the official implementation, we train the model for 3M episodes.

– T-Adapter and NT-Adapter: These are ablation baselines, where we only consider the
toxic and non toxic adapter seperately which is trained using the toxic and non toxic
split of the Adapter-Data respectively.

Evaluation Metrics We consider the following metrics to evaluate the performance of
the baseline and the proposed DQAC models.

– Mean Reciprocal Rank (MRR): Computed as MRR = 1
Dts

∑Dts

i=1
1
ri

. Here, Dts is the
size of the test data and ri is the rank of the ground-truth query in the generation (∞ if
not found).

– Semantic BERT Mean Reciprocal Rank (SBMRR): It is a variant of MRR where an
exact match is replaced by a semantic match between reference and complete query. We
consider a match if cosine similarity is ≥0.9. We use the Sentence-BERT (all-MiniLM-
L6-v2) [19] transformer model to obtain the query representations.

– Bilingual Evaluation Understudy (BLEU): We evaluate the degree of lexical match
between the reference query and the first generated completion.

– BLEU Reciprocal Rank (RR-BLEU) [23]: It is defined as the reciprocal rank weighted
average where weights are BLEU scores between reference and complete query.

– Average Max Toxicity (AmaxT): Following [3], we define it as the average of the
maximum toxicity over 10 generations for a test example. It helps set an upper-bound
on the toxic generations.

– Empirical Toxicity Probability (Prob): Following [3], we define it as the probability
of at least one of any 10 generations being toxic (toxicity score ≥0.5).

The toxic scores were obtained from the MSDetoxify and Detoxify classifiers. Queries
with toxicity score >0.5 were considered toxic otherwise non-toxic. We use GPT2
(small) as the base PLM. Different values of (α, d) influence the trade-off between
toxicity and MRR. After hyperparameter tuning on the validation set, we find (α =
2.6, d = 8) leads to low toxicity scores while preserving semantic relevance. While
generation, we use Beam search with beam size 10 to get 10 generations with a max
generation length of 80.

5 Results and Analyses
All the evaluation scores for the baselines and the proposed DQAC model are presented
in Table 1 which displays the consolidated average score of both NPNQ and NPTQ sets.
Table 2 shows results separately for NPNQ and NPTQ on Bing dataset. In accordance
with the confidential nature of the Bing dataset, the exact metric values cannot be dis-
closed, a practice that has been observed in previous studies as well [18]. Consequently,
in Tables 1 and 2, and throughout the rest of the paper, the percentage improvement
scores over the PrsGPT2 baseline are reported. Due to this, PrsGPT2 scores for Bing



10 Maheswaran et al.

are not shown. As AOL is a public dataset, we have reported exact evaluation scores for
this dataset. The evaluation scores for MRR, SBMRR, RRBLEU and BLEU should be
preferred high while scores for AmaxT and prob should be preferred low.

Comparison with state-of-the-art models: We compare with state-of-the-art baselines
such as Quark and DExpert. As presented in Table 1, overall, the proposed DQAC
model demonstrates superior performance by effectively reducing toxicity (with both
classifiers scores), while simultaneously achieving acceptable scores in ranking and
generation evaluation metrics (MRR, SBMRR, RR-BLEU and BLEU). The reduction
in these metrics is expected as there is always a trade-off between performance and safe
generation [11]. Increase in parameter α leads to decrease in toxicity scores as expected.
A decrease in MRR and SBMRR scores is also observed. The drop in SBMRR scores
is relatively lowere than the drop in MRR scores which indicates the model tries to
maintain some semantic relevance while detoxifying. Additionally, we have performed
two ablations: T-Adapter and NT-Adapter, which use only one adapter at a time - either
toxic or non-toxic.

Performance for NPTQ testset: Table 2 compares performance of various models for
the NPTQ dataset. In this subsubsection, we will focus on discussing the lower scores
observed for MRR, SBMRR, and other ranking and generation metrics. It has been
frequently observed that when a model is fine-tuned for safe and detoxification tasks,
there is a decrease in overall model performance or potential semantic disturbances,
which introduces a subjective trade-off between the acceptable level of toxicity and
performance [11]. In the QAC detoxification task, toxicity is mitigated by avoiding
toxic tokens in the completion by producing non-toxic tokens, resulting in no match
with the ground truth. This leads to MRR scores close to 0 (especially for the NPTQ
dataset, where the ground truth completions are toxic in nature). Additionally, since
completions contain only a few tokens, any alteration to a word can significantly affect
the semantics of the completion, leading to a low SBMRR score. Similar effects can
be observed for other ranking and generation metrics. However, the reasonable BLEU
scores indicate that the generated completions remain somewhat lexically relevant to
the given prefix and session, maintaining topical alignment.

We further analyze with a specific example. Given the prefix “piece of a” a toxic
completion in the dataset is “piece of a*s”. In contrast, the DQAC model generates a
non-toxic completion of “piece of analysis” which has a different semantic meaning.
Moreover, in the context of QAC systems, “piece of analysis” is generally considered
more acceptable. Since all the completions in the NPTQ dataset are toxic, low scores
of MRR and SBMRR are expected. Similar observations can be made for other strong
baseline models like Quark and DExperts, which also exhibit low MRR and SBMRR
scores. In addition, we randomly selected 50 examples from the DQAC model for hu-
man evaluation to quantify semantic difference and contextual alignment. Our findings
indicated that 47 (94%) examples displayed semantic differences from the reference,
while 42 (84%) examples maintained contextual alignment (lexical overlap) with prefix
and session. Considering all these points, we can conclude that the low MRR scores are
acceptable when the ground truth query is toxic in nature. Overall, the DQAC model,
which consistently generates the lowest toxic completions, has emerged as the best-
performing model for the NPTQ test set.
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Session: braces || teen anal brutal braces || young teen anal || sally mann 11
Prefix: teen
Reference Completion: teen braces fucked sex
Generation with Baselines: Generation with DQAC:
GPT2: teen anal 1. teen braces
DAPT: teen anal 2. teen braces white
GeDi: teen ugly scorpion get cock 3. teen browse youtube
PPLM: teen nude 4. teen browse youtube app
DExpert: teeneachy get my fat ugly wife pregnant 5. teen browse facebook
Quark: teen n instagram porn

Table 3: Sample generation from baseline and proposed DQAC model from NPTQ test-
set. Top generations from the baselines and top 5 generations from DQAC are shown.

Performance for NPNQ testset: Table 2 compares performance of various models for
the NPNQ dataset. The NPNQ test set is specifically designed to evaluate the capa-
bility of CTG models in generating non-toxic completions for non-toxic prefixes. We
observe that several baseline models, as well as the DQAC model, achieve low toxicity
scores while simultaneously maintaining satisfactory scores in terms of MRR and other
ranking and generation metrics, across both datasets. These results highlight the effec-
tiveness of the DQAC model in generating non-toxic completions while preserving the
quality and relevance of the generated completions. These results further reinforce the
model’s efficacy and reliability in the QAC domain.
Sample Generation: Table 3 illustrates sample generations from the baselines and the
proposed DQAC model, specifically considering samples from the NPTQ test set. From
the observations, we can infer two key points: (1) Generations from the baseline mod-
els exhibit a tendency towards toxicity, while the proposed DQAC model successfully
avoids generating toxic content. (2) The generated outputs differ semantically from the
reference completions, leading to lower MRR and SBMRR scores. The previous sub-
section provides a detailed discussion on this observation.

6 Conclusions
This paper proposed a novel DQAC (Detoxifying Query Auto-Completion) model,
which aims to mitigate toxicity in query auto-completions. To the best of our knowl-
edge, this is the first publicly available model to detoxify QAC. DQAC operates in the
latent representation space, employing a controllable text generation framework to ef-
fectively steer away toxic content from query completions and present related non-toxic
alternatives. Additionally, we developed the QDETOXIFY model, specifically designed
to evaluate the degree of toxicity for a given query completion. We conducted com-
prehensive comparisons of the model performance across multiple baselines using two
real-world large-scale datasets. The results consistently demonstrate that our proposed
DQAC model outperforms all the baselines and has emerged as a state-of-the-art model
for the task of detoxifying query completions. In future, we will try more recent models
as the base LM and extend the proposed framework to more generic language detoxifi-
cation tasks and other CTG applications.
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