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Machine Translation and MT Evaluation

Definition
Machine Translation(MT) deals with the conversion of natural language
texts from one language to another using computers.[1]

Definition
Machine Translation Evaluation deals with judging how good an MT
system is[7].

The evaluation of machine translation is a fundamentally hard
problem, since it relates to the unresolved problem of semantic
equivalence[7]
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Manual Vs Automatic

Manual Automatic
Done by a human well versed in
both source and target language

Done by comparing the MT output
with reference translations

Humans judge whether meaning is
preserved or not directly

Do not attempt to judge meaning
directly[4]

Expensive, time consuming and
subjective

Inexpensive and quick; useful for
tracking progress of an MT sys-
tems on fixed data set; for com-
paring different MT systems

Scores are reliable Scores may not be meaningful
Metrics: Adequacy, Fluency , In-
telligibility, Fidelity[11]

Metrics: BLEU[8], NIST[6], ME-
TEOR[1], WER[10] & TER[9]
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Manual Evaluation Metrics

Metric Underlying Idea
Adequacy How well the meaning is captured in trans-

lation (TL)
Fluency How fluent translation is in TL
Intelligibility How understandable the text is in TL
Fidelity or Accuracy How much information is retained in the TL
Task-oriented[12] Judge whether an MT system is suitable for

tasks like comprehension, extraction, etc.
Segment ranking[3] Ranking outputs from various MT systems
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Automatic Evaluation Metrics

Metric Underlying Idea
BLEU Geometric mean of modified n-gram preci-

sion with brevity penalty
NIST Variant of BLEU with weighted n-gram pre-

cision and modified brevity penalty
METEOR Harmonic mean of Precision and Recall of

uni-gram as well as approximate matches
(stem, synonyms etc.), using linguistic re-
sources like steamers, Word-net, etc.

METEOR-Hindi Modified METEOR metric which uses Hindi
related resources

WER Min number of edit operations required to
transfer a MT output into a reference trans-
lation

TER Same as WER with additional shift edit
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Questions We Wanted To Ask

1 How well do the automatic scores correlate with manual
scores?

2 What is the distribution of manual scores for a given interval
of automatic scores?

3 Can we estimate the manual metric score for a given
automatic metric score?
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Choice of Metrics
Manual Metrics

Checking if meaning is preserved or not is more important
Therefore, we chose Adequacy over Fluency

Adequacy: how well translated sentence convey same meaning as input
sentence? is phrase or part of text is distorted, added or lost?[7]

Scores Adequacy
5 all meaning is preserved
4 most meaning is preserved
3 much meaning is preserved
2 little meaning is preserved
1 none of the meaning is preserved

Table: Manual Metric: Adequacy

Automatic Metrics
BLEU, NIST, METEOR, WER and TER
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Data and MT Systems Detail

Translation direction: English to Hindi

WMT14[2] published 2507 test sentences with reference translations
- we randomly selected 450 sentences from this dataset

Translation outputs considered from 3 different
systems:Online-B[*]1, IIT-BOMBAY[10] and
MANAWI-RMOOVE(MR)[11]2

Data: 450 x 3 = 1350 <source, reference, system-output> triples

1[*]. No exact citation is found for this system because translation outputs
are collected by WMT14 organizing committee

2ranked 1, 5 and 9 respectively in the shared task WMT14 for English Hindi
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Manual Evaluation

Done by 9 bilingual annotators

Each annotator evaluates 300 sentences in two rounds: 150
sentences per round

Each will get equal proportions from all 3 MT systems

Every system-output will be annotated by exactly 2 annotators (for
getting inter-annotator agreement)

Average of scores from two annotators is considered for further
experiments
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Inter Annotator Agreement - Kappa Coefficient (k)
Kappa coefficient (k)[5]

k =
P(A) − P(E)

1 − P(E)

Where,
P(A): proportion of times the annotators agree
P(E): proportion of times they would agree by chance

Kappa Agreement
< 0 Less than chance

agreement
0.01 - 0.20 Slight agreement
0.21 - 0.40 Fair agreement
0.41 - 0.60 Moderate agree-

ment
0.61 - 0.80 Substantial agree-

ment
0.81 - 0.99 Almost perfect

agreement
1 Perfect agreement

MT System #Sen-
tences

k-
Values

Online-B 450 0.2366
IIT-Bombay 450 0.2327
MANAWI-
RMOOVE

450 0.2821

All Systems 1350 0.2884

Table: Kappa coefficient interpretation and K-values for inter annotator
agreement

Our results of inter annotator agreement are similar to WMT14.
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Automatic Evaluation

Automatic metric scores are computed for all 1350 (450X3) system
outputs
Scores are obtained using open source tools3 4 5

3BLEU and NIST: https://github.com/moses-smt/mosesdecoder/blob/
master/scripts/generic/mteval-v13a.pl

4METEOR: http://www.cs.cmu.edu/ alavie/METEOR/
5TER and WER: http://www.cs.umd.edu/ snover/tercom/
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Correlation:Best Automatic Metric

We find the best automatic metric using correlation scores between
average human judgment(adequacy score) and automatic metric
scores.
higher the correlation score better the metric is.

Figure: Average adequacy score vs. Automatic metric
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Pearson’s correlation coefficient(ρ)[13]

ρ = Σn
i=1(Hi − H̄)(Mi − M̄)√

Σn
i=1(Hi − H̄)2

√
Σn

i=1(Mi − M̄)2

where,
Hi : manual evaluation score of segment i
Mi : automatic evaluation score of segment i
H̄: average of manual scores
M̄: average of automatic scores
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Correlation Negative Positive
small -0.29 to -0.10 0.10 to 0.29

medium -0.49 to -0.30 0.30 to 0.49
large -1.00 to -0.50 0.50 to 1.00

Metrics ρ-Value
BLEU 0.401
NIST 0.481

METEOR 0.513
TER 0.384
WER 0.345

Table: Interpretation of Pearson’s correlation coefficient and scores for
different metrics

Highest correlation score of METEOR indicates it as the best
automatic metric
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Kendall’s tau(τ) rank correlation[14]

τb = nc − nd√
(n0 − n1)(n0 − n2)

where
n0 = n(n − 1)/2
n = number of segments
n1 =

∑
i ti (ti − 1)/2

n2 =
∑

j uj(uj − 1)/2
nc = Number of concordant pairs
nd = Number of discordant pairs
ti = Number of tied values in the i th group of ties for the first

quantity
tj = Number of tied values in the j th group of ties for the

second quantity
Given a set of manual and automatic score pairs:
{(x1, y1), (x2, y2), ..., (xn, yn)},
any pair of scores, (xi , yi ), (xj , yj) : i 6= j are:
Concordant if xi > xj and yi > yj ; or if both xi < xj and yi < yj
Discordant if xi < xj and yi > yj ; or if xi > xj and yi < yj
Tie, if xi = xj and yi = yj
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Metrics τ -Value
BLEU 0.287
NIST 0.336

METEOR 0.361
TER 0.269
WER 0.219

Table: Kendall’s τ correlation scores for different metrics

Above Score also indicate that best automatic metric for
English-to-Hindi translation pair is METEOR
Automatic scores has weak correlation with manual scores
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Distribution: Manual Vs. Automatic

Figure: Distribution of Manual Scores for each interval of Meteor Scores
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Meteor Scores Manual scores
0.0 - 0.1 NA
0.1 - 0.2 1.48 - 1.88
0.2 - 0.3 2.52 - 2.66
0.3 - 0.4 3.11 - 3.26
0.4 - 0.5 3.73 - 4.12
0.5 - 0.6 4.56 - 5.0
0.6 - 0.9 NA
0.9 - 1.0 5.0 - 5.0

Table: 95% Confidence Interval of Manual Scores for Each interval of
Meteor Scores
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Automatic scores have a weak correlation with manual scores

METEOR correlates best with Adequacy

Quality of MT can be estimated from METEOR scores in certain
ranges
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