Conclusions

References

## Machine Translation Evaluation: Manual Vs Automatic - A Comparative Study

Kaushal Kumar Maurya

Ch. Ram Anirudh

Renjith P. Ravindran

K. Narayana Murthy



### ICDECT-2019

School of Computer and Information Sciences University of Hyderabad

15-03-2019

| Introduction |  |  |
|--------------|--|--|
|              |  |  |

Conclusions

References

### Table of Contents

### Introduction & Aim

- Machine Translation and MT Evaluation
- Questions We Want To Ask

### 2 Experiments & Results

- Choice of Metrics
- Data and MT Systems Details
- Manual Evaluation
- Automatic Evaluation
- Correlation Experiment
- Distribution Experiment

### 3 Conclusions



Conclusions

References

### Machine Translation and MT Evaluation

#### Definition

Machine Translation(MT) deals with the conversion of natural language texts from one language to another using computers.[1]

#### Definition

*Machine Translation Evaluation* deals with judging how good an MT system is[7].

• The evaluation of machine translation is a fundamentally hard problem, since it relates to the unresolved problem of semantic equivalence[7]

Introduction & Aim ○●○○○ Experiments & Results

Conclusions

References

### Manual Vs Automatic

| Manual                           | Automatic                         |  |
|----------------------------------|-----------------------------------|--|
| Done by a human well versed in   | Done by comparing the MT output   |  |
| both source and target language  | with reference translations       |  |
| Humans judge whether meaning is  | Do not attempt to judge meaning   |  |
| preserved or not directly        | directly[4]                       |  |
| Expensive, time consuming and    | Inexpensive and quick; useful for |  |
| subjective                       | tracking progress of an MT sys-   |  |
|                                  | tems on fixed data set; for com-  |  |
|                                  | paring different MT systems       |  |
| Scores are reliable              | Scores may not be meaningful      |  |
| Metrics: Adequacy, Fluency , In- | Metrics: BLEU[8], NIST[6], ME-    |  |
| telligibility, Fidelity[11]      | TEOR[1], WER[10] & TER[9]         |  |

Introduction & Aim ○○●○○ Experiments & Results

Conclusions

References

### Manual Evaluation Metrics

| Metric               | Underlying Idea                            |
|----------------------|--------------------------------------------|
| Adequacy             | How well the meaning is captured in trans- |
|                      | lation (TL)                                |
| Fluency              | How fluent translation is in TL            |
| Intelligibility      | How understandable the text is in TL       |
| Fidelity or Accuracy | How much information is retained in the TL |
| Task-oriented[12]    | Judge whether an MT system is suitable for |
|                      | tasks like comprehension, extraction, etc. |
| Segment ranking[3]   | Ranking outputs from various MT systems    |

Experiments & Results

Conclusions

References

### Automatic Evaluation Metrics

| Metric       | Underlying Idea                              |
|--------------|----------------------------------------------|
| BLEU         | Geometric mean of modified n-gram preci-     |
|              | sion with brevity penalty                    |
| NIST         | Variant of BLEU with weighted n-gram pre-    |
|              | cision and modified brevity penalty          |
| METEOR       | Harmonic mean of Precision and Recall of     |
|              | uni-gram as well as approximate matches      |
|              | (stem, synonyms etc.), using linguistic re-  |
|              | sources like steamers, Word-net, etc.        |
| METEOR-Hindi | Modified METEOR metric which uses Hindi      |
|              | related resources                            |
| WER          | Min number of edit operations required to    |
|              | transfer a MT output into a reference trans- |
|              | lation                                       |
| TER          | Same as WER with additional shift edit       |

Conclusions

### Questions We Wanted To Ask

- How well do the automatic scores correlate with manual scores?
- What is the distribution of manual scores for a given interval of automatic scores?
- S Can we estimate the manual metric score for a given automatic metric score?

Conclusions

References

### Choice of Metrics

#### **Manual Metrics**

- Checking if meaning is preserved or not is more important
- Therefore, we chose Adequacy over Fluency

**Adequacy:** how well translated sentence convey same meaning as input sentence? is phrase or part of text is distorted, added or lost?[7]

| Scores | Adequacy                         |
|--------|----------------------------------|
| 5      | all meaning is preserved         |
| 4      | most meaning is preserved        |
| 3      | much meaning is preserved        |
| 2      | little meaning is preserved      |
| 1      | none of the meaning is preserved |

Table: Manual Metric: Adequacy

#### **Automatic Metrics**

• BLEU, NIST, METEOR, WER and TER

### Data and MT Systems Detail

- Translation direction: English to Hindi
- WMT14[2] published 2507 test sentences with reference translations
  - we randomly selected 450 sentences from this dataset
- Translation outputs considered from 3 different systems:Online-B[\*]<sup>1</sup>, IIT-BOMBAY[10] and MANAWI-RMOOVE(MR)[11]<sup>2</sup>
- Data:  $450 \times 3 = 1350$  <source, reference, system-output> triples

<sup>&</sup>lt;sup>1</sup>[\*]. No exact citation is found for this system because translation outputs are collected by WMT14 organizing committee

 $<sup>^2 {\</sup>rm ranked}$  1, 5 and 9 respectively in the shared task WMT14 for English Hindi

### Manual Evaluation

- Done by 9 bilingual annotators
- Each annotator evaluates 300 sentences in two rounds: 150 sentences per round
- Each will get equal proportions from all 3 MT systems
- Every system-output will be annotated by exactly 2 annotators (for getting inter-annotator agreement)
- Average of scores from two annotators is considered for further experiments

### Inter Annotator Agreement - Kappa Coefficient (k)

Kappa coefficient (k)[5]

$$k = \frac{P(A) - P(E)}{1 - P(E)}$$

Where,

P(A): proportion of times the annotators agree

P(E): proportion of times they would agree by chance

| Карра       | Agreement          |
|-------------|--------------------|
| < 0         | Less than chance   |
|             | agreement          |
| 0.01 - 0.20 | Slight agreement   |
| 0.21 - 0.40 | Fair agreement     |
| 0.41 - 0.60 | Moderate agree-    |
|             | ment               |
| 0.61 - 0.80 | Substantial agree- |
|             | ment               |
| 0.81 - 0.99 | Almost perfect     |
|             | agreement          |
| 1           | Perfect agreement  |

| MT System   | #Sen-  | k-     |
|-------------|--------|--------|
|             | tences | Values |
| Online-B    | 450    | 0.2366 |
| IIT-Bombay  | 450    | 0.2327 |
| MANAWI-     | 450    | 0.2821 |
| RMOOVE      |        |        |
| All Systems | 1350   | 0.2884 |

# Table: Kappa coefficient interpretation and K-values for inter annotator agreement

Our results of inter annotator agreement are similar to WMT14.

Conclusions

### Automatic Evaluation

- Automatic metric scores are computed for all 1350 (450X3) system outputs
- Scores are obtained using open source tools<sup>3 4 5</sup>

<sup>3</sup>BLEU and NIST: https://github.com/moses-smt/mosesdecoder/blob/ master/scripts/generic/mteval-v13a.pl <sup>4</sup>METEOR: http://www.cs.cmu.edu/ alavie/METEOR/ <sup>5</sup>TER and WER: http://www.cs.umd.edu/ snover/tercom/

Experiments & Results

Conclusions

References

### Correlation:Best Automatic Metric

- We find the best automatic metric using correlation scores between average human judgment(adequacy score) and automatic metric scores.
- higher the correlation score better the metric is.



Experiments & Results

Conclusions

References

### Pearson's correlation coefficient( $\rho$ )[13]

$$\rho = \frac{\sum_{i=1}^{n} (H_i - \bar{H}) (M_i - \bar{M})}{\sqrt{\sum_{i=1}^{n} (H_i - \bar{H})^2} \sqrt{\sum_{i=1}^{n} (M_i - \bar{M})^2}}$$

where,

- $H_i$ : manual evaluation score of segment *i*
- $M_i$ : automatic evaluation score of segment i
- $\overline{H}$ : average of manual scores
- $\overline{M}$ : average of automatic scores

| roduct | ion & Aim   | Experiments & Res | ults         | Conc | lusions | Refe    | eren |
|--------|-------------|-------------------|--------------|------|---------|---------|------|
|        |             |                   |              |      |         |         |      |
|        |             |                   |              | [    | Metrics | ρ-Value | 7    |
|        | Correlation | Negative          | Positive     | ן ן  | BLEU    | 0.401   | Ī    |
|        | small       | -0.29 to -0.10    | 0.10 to 0.29 | í í  | NIST    | 0.481   |      |
|        | medium      | -0.49 to -0.30    | 0.30 to 0.49 |      | METEOR  | 0.513   | 1    |
|        | large       | -1.00 to -0.50    | 0.50 to 1.00 |      | TER     | 0.384   | 1    |
|        |             |                   |              | ł    | WFR     | 0.345   | 1    |

Table: Interpretation of Pearson's correlation coefficient and scores for different metrics

• Highest correlation score of METEOR indicates it as the best automatic metric

Experiments & Results

Conclusions

References

## Kendall's tau( $\tau$ ) rank correlation[14]

$$\tau_b = \frac{n_c - n_d}{\sqrt{(n_0 - n_1)(n_0 - n_2)}}$$

where

 $\begin{array}{l} n_0 = n(n-1)/2 \\ n = \text{number of segments} \\ n_1 = \sum_i t_i(t_i-1)/2 \\ n_2 = \sum_j u_j(u_j-1)/2 \\ n_c = \text{Number of concordant pairs} \\ n_d = \text{Number of discordant pairs} \\ t_i = \text{Number of tied values in the } i^{th} \text{ group of ties for the first} \end{array}$ 

quantity

 $t_j =$  Number of tied values in the  $j^{th}$  group of ties for the second quantity

Given a set of manual and automatic score pairs:  $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\},\$ any pair of scores,  $(x_i, y_i), (x_j, y_j) : i \neq j$  are: **Concordant** if  $x_i > x_j$  and  $y_i > y_j$ ; or if both  $x_i < x_j$  and  $y_i < y_j$ **Discordant** if  $x_i < x_j$  and  $y_i > y_j$ ; or if  $x_i > x_j$  and  $y_i < y_j$ 

Conclusions

References

| Metrics | $\tau$ -Value |
|---------|---------------|
| BLEU    | 0.287         |
| NIST    | 0.336         |
| METEOR  | 0.361         |
| TER     | 0.269         |
| WER     | 0.219         |

Table: Kendall's  $\tau$  correlation scores for different metrics

- Above Score also indicate that best automatic metric for English-to-Hindi translation pair is **METEOR**
- Automatic scores has weak correlation with manual scores

Experiments & Results

Conclusions

References

### Distribution: Manual Vs. Automatic



Figure: Distribution of Manual Scores for each interval of Meteor Scores

| Meteor Scores | Manual scores |
|---------------|---------------|
| 0.0 - 0.1     | NA            |
| 0.1 - 0.2     | 1.48 - 1.88   |
| 0.2 - 0.3     | 2.52 - 2.66   |
| 0.3 - 0.4     | 3.11 - 3.26   |
| 0.4 - 0.5     | 3.73 - 4.12   |
| 0.5 - 0.6     | 4.56 - 5.0    |
| 0.6 - 0.9     | NA            |
| 0.9 - 1.0     | 5.0 - 5.0     |

Table: 95% Confidence Interval of Manual Scores for Each interval of Meteor Scores

- Automatic scores have a weak correlation with manual scores
- METEOR correlates best with Adequacy
- Quality of MT can be estimated from METEOR scores in certain ranges

| Introduction & Aim<br>00000 | Experiments & Results | Conclusions | References |
|-----------------------------|-----------------------|-------------|------------|
| References I                |                       |             |            |

- W John Hutchins. Machine translation: A brief history. Concise history of the language sciences: from the Sumerians to the cognitivists, pages 431-445, 1995.
- 2 Philipp Koehn. Statistical machine translation. Cambridge University Press, 2009.

Ondrej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp Koehn, Johannes Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve Saint-Amand, et al. Findings of the 2014 workshop on statistical machine translation. In Proceedings of the Ninth Workshop on Statistical Machine Translation, pages 12-58. Association for Computational Linguistics Baltimore, MD, USA, 2014.

- Kenneth W Church and Eduard H Hovy. Good applications for crummy machine translation. Machine Translation, 8(4):239-258, 1993.
- Sishor Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics, pages 311-318, 2002.
- George Doddington. Automatic evaluation of machine translation quality using n-gram co-occurrence statistics. In Proceedings of the second international conference on Human Language Technology Research, pages 138-145. Morgan Kaufmann Publishers Inc., 2002.
- Stanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved correlation with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization, volume 29, pages 65-72, 2005.
- Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John Makhoul. A study of translation edit rate with targeted human annotation. In Proceedings of association for machine translation in the Americas, volume 200, 2006.

| Introduction & Aim | Experiments & Results | Conclusions |
|--------------------|-----------------------|-------------|
|                    |                       |             |
|                    |                       |             |

### References II

Keh-Yih Su, Ming-Wen Wu, and Jing-Shin Chang. 1992. A new quantitative quality measure for machine translation systems. In Proceedings of the 14th conference on Computational linguistics-Volume 2. Association for Computational Linguistics, 433-439.

References

- Piyush Dungarwal, Rajen Chatterjee, Abhijit Mishra, Anoop Kunchukuttan, Ritesh Shah, and Pushpak Bhattacharyya. 2014. The IIT Bombay Hindi English Translation System at WMT 2014. ACL 2014 (2014), 90.
- Liling Tan and Santanu Pal. 2014. Manawi: Using multi-word expressions and named entities to improve machine translation. In Proceedings of the Ninth Workshop on Statistical Machine Translation. 201-206.
- Jacob Cohen. A coefficient of agreement for nominal scales. Educational and psychoogical measurement, 20(1):37-46, 1960.
- Karl Pearson. X. on the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50(302):157-175, 1900.
- Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81-93, 1938.
- Christian Federmann. Appraise: An open-source toolkit for manual evaluation of machine translation output. The Prague Bulletin of Mathematical Linguistics, 98:25âÅŞ35, September 2012.
- Stanford NLP Group. Machine Translation. https://nlp.stanford.edu/projects/mt.shtml. 7:49AM, 01-08-2017.

Experiments & Results

Conclusions

References

# Thank You !!!