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Abstract
Advancements in deep learning have yielded remarkable success in Natural Lan-

guage Generation (NLG), driven by advancements in neural architectures and the
availability of large datasets. However, the wide adoption of these NLG models for
downstream tasks is often challenging, especially in scenarios such as applications
requiring diverse text generation, limited context in data, and limited volume of task-
specific labeled data. Diverse text generation necessitates a one-to-many setup, where
the model generates multiple outputs that are semantically similar yet lexically di-
verse, all derived from a single input. In the limited context scenario, the model
often generates unexpected output due to the lack of relevant context in the input
text. The limited data scenario is a frequent and more challenging problem, particu-
larly for low-resource languages (LRLs). Current NLP research has primarily focused
on high-resource languages (HRLs), e.g., English, which benefit from computation-
ally accessible large training data. Despite the exciting progress in HRLs, there are
over 7,000 languages globally, and the majority lack the necessary resources to train
modern deep neural networks. In fact, collecting labeled data for these LRLs is often
prohibitively expensive or infeasible. The scarcity of task-specific labeled data is more
pronounced for NLG tasks, which limits the extension of NLG technology to LRLs.

In this thesis, we address the aforementioned challenges and extend NLG mod-
eling to diverse text generation, limited context, and limited data (i.e., low-resource
languages) scenarios. This thesis contains two parts. The first part addresses the
diverse text generation and limited context issues. In particular, we have designed a
semantic decoupling and multi-decoder-based approach to guide diverse text genera-
tion. Further, we explore the retrieval-augmented generation (RAG) type of modeling
approach to augment relevant external context in deep neural networks to address
limited context issues. The second part of the thesis is dedicated to extending NLG
modeling to LRLs. Here, we focus on cross-lingual modeling - transferring supervision
from HRLs to LRLs. Our primary focus is on zero-shot modeling for scalability. In
particular, we first focus on well-formed zero-shot text generation in LRLs by mit-
igating the catastrophic forgetting problem. We achieve this through unsupervised
adaptive training. Next, we propose a novel meta-learning-based approach to transfer
more uniform cross-lingual supervision across multiple LRLs and NLG tasks. Finally,
we extend NLG modeling for extremely low-resource languages (ELRLs) that lack
parallel data, have no or limited monolingual data, and are absent in modern large
multilingual pre-trained language models. To achieve this, we propose noise augmen-
tation techniques inspired by surface-level lexical similarity between closely-related
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HRLs and ELRLs. These proposed modeling approaches successfully overcome the
mentioned limitations and extend NLG modeling to benefit a wider population.
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Chapter 1

Introduction

In 1978, Douglas Adams presented his comedy science fiction series The Hitchhiker’s
Guide to the Galaxy through a late-night BBC Radio show. The series portrays the
protagonist, Arthur Dent, a human from Earth, who gains the extraordinary ability
to comprehensively understand and communicate with various aliens, facilitated by
the use of a fictional device called the Babel fish inserted into his ear. Now, 45
years after The Hitchhiker’s Guide, it is still science fiction to have a real Babel fish
that enables language technology to approximately 7000 languages that are present
across the globe1. In recent times, remarkable progress has been made in the field of
natural language processing (NLP). Despite this progress, the application of language
technologies remains limited to only a few hundred languages, with a particular focus
on a few high-resource languages [Ben19, JSB+20].

Extending this discussion, the primary driving force for such remarkable ad-
vancement in NLP research has been propelled by large pre-trained language models
(PLMs; [ZZL+23, YJT+23]) based on self-supervised training objectives [YJT+23].
These PLMs are developed on top of transformer neural network [VSP+17] and
have millions or billions of parameters. They undergo training on large monolin-
gual data for thousands of compute hours, yielding high-quality out-of-box represen-
tations. Subsequently, these models can be fine-tuned for downstream tasks, leading
to superior accuracy. However, there is a notable disparity in NLP research, with
the majority of studies being conducted on English data [Ben19, JSB+20], despite
the fact that the vast majority of the global population, approximately 95%, do not
speak English as their primary language, and a staggering 75% does not speak En-
glish at all2. Further, there are around 7,000 spoken languages, with approximately

1https://www.ethnologue.com/insights/how-many-languages/
2https://en.wikipedia.org/wiki/List_of_languages_by_total_number_of_speakers
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400 languages having over 1 million speakers and about 1,200 languages having more
than 100,000 speakers [vELR+22]. As per Joshi et al. [JSB+20], 88% of the world’s
languages, spoken by 1.2 billion people, and are untouched by the benefits of lan-
guage technology. A study presented at ACL 2008 [Ben11] revealed that 63% of all
papers focused only on English. A more recent study during ACL 2021 [RVS22] con-
cluded that nearly 70% of the papers were evaluated on English datasets. 10 years
of progress and language coverage in NLP research is almost unchanged due to the
limited availability of datasets for low-resource languages (LRLs), aka. the long tail
of languages. To put it succinctly, the scarcity of data, lack of linguistic tools and
resources, and absence of representation from PLMs [DRK+21] leads to performance
gaps or hinders advancement of language technology for LRLs3.

This thesis is a step towards enabling language technologies for tailored low-
resource languages (LRLs) characterized by limited available data. The primary
focus is on natural language generation (NLG), a field concerned with the automated
generation of human-like text from a given input context. The context can be a nat-
ural language text, an image, a video, etc. NLG consists of a wider range of tasks,
including machine translation, abstractive text summarization, headline generation,
question generation, and many more. The issue of data scarcity is more pronounced
for NLG tasks as task-specific data availability for LRLs is even rare. Current mul-
tilingual language models support only around 100 languages [XCR+21]. Moreover,
their adaptability to various generative applications, even for 100 languages, poses a
significant challenge [AHO+23]. The thesis objective is to replicate the capabilities of
the Babel fish — automated machine translation — for LRLs. Moreover, the scope
of this thesis extends beyond machine translation — extending NLG technology to
three frequently observed yet challenging scenarios: (1) diverse text generation, (2)
text generation with limited context, and (3) text generation with limited labeled
data, as is the case for LRLs. Fig. 1.1 presents examples of Hindi-to-English transla-
tion and news headline generation in an HRL (i.e., English) and LRL (i.e., Hindi).

Diverse text generation in NLG is crucial for real-world applications. For ex-
ample, diverse headlines for input news articles can give the author/publisher few
options to select and broaden the audience’s engagement [EMKD23]. Similarly, gen-
erating diverse responses for frequently occurring monotonous contexts in a dialogue
system enhances user engagement. Another application is the distractor generation
(DG), which involves generating multiple distractors or incorrect options for a given
Multiple-Choice Question (MCQ) for reading comprehension, i.e., a triplet of <pas-

3https://labs.theguardian.com/digital-language-divide/?ref=ruder.io
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This is a beautiful day.

यह एक खूबसूरत िदन है। 

News Article Generated Headline

(a) Machine Translation 
(b) News Headline Generation 

बॉलीवुड ने पूव� �धानमं�ी अटल िबहारी वाजपेयी
पर एक िफ� की घोषणा की है। यह िफ�
उ�ेख एनपी की िकताब द अनटो� वाजपेयी:
.....अिधक जानने के िलए देख� पूरा वीिडयो।

The white house said late wednesday it
sent a proposed us-india nuclear
agreement to congress for final approval.

white house sends India
nuclear deal to congress

पूव� �धानमं�ी अटल िबहारी
वाजपेयी पर बनेगी िफ�

Figure 1.1: Examples of machine translation (left) and text generation in LRL (right)

sage, question, correct answer>. This capability is particularly valuable for
saving time for course instructors or Intelligent Tutoring Systems (ITS; [Wen14]) for
creating diverse incorrect options. The task of distractor generation is one of the
problems addressed in the thesis. Taking this forward, any NLG model requires an
input context for performing the generation. Sometimes, the input context is limited
or non-relevant, posing a challenge to the NLG modeling and leading to meaning-
less or ambiguous generations. In this thesis, we have considered a limited context
scenario, frequently observed in personalized query auto-completion (PQAC) tasks,
specifically for short and unseen prefixes. It is a task of generating completions given
the user-specific <query prefix, sessions>. The session comprises previously
typed queries within a specified time span. For short and unseen prefixes, the con-
text within the prefix and in the session is limited (non-available or non-relevant),
leading to poor-quality completions.

These problems hinder the advancement of NLG modeling. We delineate more
fine-grained challenges associated with these problems and establish the thesis objec-
tives based on them.

1.1 Challenges and Thesis Objectives
Context Selection and Diverse Text Generation: Encoder-decoder-based NLG
models have been explored in literature for various generative applications. We focus
on the distractor generation task, which involves generating distractors or incorrect
options for given Multiple-Choice Questions (MCQ) for reading comprehension, i.e.,
the input is a triplet of <passage, question, correct answer>. The ideal
distractors should possess the following properties: (i) contextual relevance to the
question, (ii) semantic dissimilarity to the answer, (iii) diversity from each other, and
(iv) confusion-inducing. It has been observed that existing models may fail to achieve
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one or more of these properties. For instance, generated distractors may be similar to
the answer [ZLW20] or lack diversity [GBL+19], among other issues. In this thesis,
we propose a modeling approach based on semantic decoupling of passage sentences
and a multi-decoder network to generate diverse distractors.

Generation with Limited Context: In another NLG application, personalized
query auto-completions (PQAC), the challenges related to limited context are preva-
lent and result in low-quality generations. Query formulation can be time-consuming
for naive or users with complex information needs. Modern search engines, therefore,
have a Query Auto-Completion (QAC) module to assist users in efficiently expressing
their information needs as a search query. Due to advancements in NLG, QAC is for-
mulated as an NLG problem, which involves generating top-m completions given the
user-specific <query prefix, session>. The session contains personalized data -
previously typed queries - making them Personalized QAC (PQAC) systems.

While research in query completion spans over many decades, the challenge of
limited context, particularly for short and unseen prefixes, persists. Short prefixes
typically consist of a few characters and unseen prefixes are those which have never
been recorded previously (new query prefixes typed by the user). The traditional
Trie-based model [MC15] offers the most popular completions (MPC) for short pre-
fixes and provides no completions for unseen prefixes. Modern NLG-based models
can be used to overcome the limitations by generating completions for unseen pre-
fixes. However, since short prefixes have few characters and unseen prefixes are rarely
typed, their context within the prefix and in the session is limited, leading to poor
and non-relevant completions. In this thesis, we address the challenge of generating
high-quality completions with limited context, particularly for short and unseen pre-
fixes.

Catastrophic forgetting Problem in Zero-shot Generation: The remarkable
progress in NLP is primarily driven by large annotated datasets. However, most
low-resource languages (LRLs) lack such annotated datasets. To address this issue,
cross-lingual transfer has emerged as a popular technique for enabling language tech-
nology in LRLs with limited supervision or limited annotated data. In this modeling
approach, a multilingual pre-trained language model (mPLM) is trained with large
task-specific data in high-resource languages (HRL) and then evaluated for the task
on unseen LRLs (zero-shot) or on LRLs with limited examples (few-shot). This mod-
eling regime transfers supervision from HRLs to LRLs, extending language technology
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in many LRLs. For example, let us consider a sentiment analysis task. Initially, a
mPLM is trained using a large HRL dataset, often in English, where the input con-
sists of English sentences, and the target is the class label. Subsequently, when a
sentence in LRL (e.g., in Hindi) is fed, the model generates an appropriate class label
for the input sentence.

This modeling recipe presents additional challenges for the NLG tasks. One chal-
lenge is the issue of catastrophic forgetting. In the zero-shot evaluation phase of the
NLG task in LRLs, the text must be generated in LRLs. For instance, the abstractive
text summarization model (developed with the above recipe) is expected to generate a
zero-shot summary in LRL when given an LRL input article. However, it is observed
that [XCR+21] the zero-shot generations are in HRL or code-mixed with HRL and
LRL. This occurs because the model forgets the multilingual pre-training, which is
referred to as the catastrophic forgetting/off-target/accidental translation problem.
This issue has impeded the extension of existing NLG techniques to a wide range
of LRLs. In this thesis, we address the catastrophic forgetting problem to enable the
well-formed zero-shot generation in LRLs.

Non-uniform Cross-lingual Transfer in Zero-shot Generation: The second
challenge in cross-lingual modeling is non-uniform supervision transfer. As super-
vision is transferred from HRL to LRLs, for LRLs that are similar (close) to the
considered HRLs, the transfer strength is high. However, for languages that are less
similar to HRL, the transfer is often weak. This creates issues of non-uniform super-
vision transfer, which directly impacts the zero-shot performance for LRLs; that is,
the better the supervision transfer, the better the performance, and vice versa. This
thesis investigates modeling approaches to transfer supervision from HRL to LRLs
more uniformly.

Extending Generative NLP for Extremely Low-resource Languages: There
are approximately 7,000 spoken languages worldwide, ranging from HRLs like English
to LRLs such as Hindi or Japanese. Within the spectrum of LRLs, there exists a
large subset known as Extremely Low-Resource Languages (ELRLs), exemplified by
languages like Bhojpuri or Sundanese. Unlike HRLs and some LRLs, ELRLs lack
parallel or pseudo-parallel data, have limited monolingual resources, and are not
represented in multilingual pre-trained language models. This scarcity of learning
resources makes the task of developing NLG applications for ELRLs more challenging.
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This thesis investigates modeling approaches to develop an NLG technology for ELRLs,
particularly machine translation from ELRLs to English.

1.2 Main Contributions
Considering the above objectives, we make the following contributions with this thesis:

1. We address the problem of diverse text generation for the distractor genera-
tion (DG) task. Specifically, we propose a novel Hierarchical Encoder-Decoder,
LSTM-based neural network (HMD-Net; [MD20b]) model for the distractor
generation. On the encoder side, it employs softsel and Gated Mechanism to
identify candidate (decouple) sentences in the input passage that are not se-
mantically similar to the answer and maintain context with the question. The
decoder conditions on these candidate sentences, the question statement, and
the correct answer in a multi-decoder setup (interconnected with each other) to
generate lexically diverse and confusing multiple distractors. We further utilize
linguistic features and BERT contextual token embedding representations to
boost the model’s performance. We prepared a new DG dataset from the ex-
isting RACE MCQ dataset. The proposed model achieved, on average, 10.99%
BLEU and a huge 70.27% ROUGE-L improvement across three distractors over
the best baseline.

2. We address the limited context problem in personalized query auto-completions
(PQAC), specifically for short and unseen prefixes. We leverage insights from
both Trie and NLG and proposed Trie-NLG model [MDGA23]. In Trie-
NLG, we first provide a quantitative analysis to motivate the need for in-
corporating both popularity signals from the trie and personalization signals
from session queries for effective QAC. Then, we create two tries: MPCMain

and MPCSynth for short and unseen prefixes, respectively. Finally, we explore
the Retrieval-Augmented Generation (RAG; [LPP+20]) type of framework to
augment top completions from both tries and fine-tune a pre-trained language
model. To the best of our knowledge, this is the first attempt of trie knowl-
edge augmentation in NLG models for personalized QAC. We have achieved
state-of-the-art performance on two real prefix-to-query click behavior QAC
datasets from Bing and AOL. On average, our model achieved a huge 57.01%
and 14.33% boost in Mean Reciprocal Rank (MRR) compared to the popular
trie-based lookup and the strong BART-based baseline methods, respectively.
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3. We take a step towards the generation of low-resource languages across four
NLG tasks with limited data/supervision. Specifically, we propose a novel un-
supervised cross-lingual framework - ZmBART [MDKD21b]. ZmBART is de-
veloped on top of the mBART pre-trained language model and does not require
parallel data/pseudo-parallel or back-translated data. This framework employs
(1) intermediate unsupervised adaptive training, (2) freezing the model com-
ponent (inspired by continual learning approaches), and (3) adding language
tags. These measures mitigate the catastrophic forgetting problems and gener-
ate well-formed zero-shot text in LRLs. Adaptive unsupervised training is done
with novel auxiliary task that requires only small monolingual data from LRLs.
Here, we consider four NLG tasks and three typologically diverse languages.
The proposed approach is scalable to multiple NLG tasks (as the model does
not modify any hyper-parameter values across the tasks) and LRLs (operates
in a zero-shot setting). Additionally, we have also created HiDG, a high-quality
distractor generation dataset for the Hindi language.

4. We address the issue of non-uniform supervision transfer in cross-lingual mod-
eling, aiming to alleviate limited supervision issues. Towards this, we propose
a novel cross-lingual transfer and generation framework, Meta-XNLG [MD22],
based on Model-Agnostic Meta-Learning (MAML), and language clustering. In
Meta-XNLG , we first cluster languages and identify the centroid language for
each cluster. Subsequently, the MAML algorithm is trained using centroid lan-
guages and evaluated with non-centroid languages in a zero-shot setting. Train-
ing with a single centroid language facilitates intra-cluster generalization, while
training with multiple centroid languages enables inter-cluster generalization.
This way, the proposed approach exhibits more uniform cross-lingual transfer.
The framework is developed on top of the mBART model. It is the first at-
tempt, to the best of our knowledge, to explore meta-learning techniques for
cross-lingual NLG. We evaluate the model’s performance across two NLG tasks,
30 LRLs, and 5 popular datasets. The proposed model outperforms all strong
baselines, achieving an average improvement of 13.16% in the ROUGE-L for
abstraction text summarization and 7.86% in the BLEU for question generation
over the strong baseline across considered LRLs and datasets.

5. We enable NLG, specifically machine translation technology, for extremely low-
resource languages (ELRLs). Specifically, we have addressed the task of ELRLs
to English machine translation (MT) by utilizing surface-level lexical similar-
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ity between closely related ELRLs and HRL. There are many ELRLs that are
lexically similar to HRLs; for example, Bhojpuri is lexically similar to Hindi.
The training instance for ELRL (say, Ei) is a noisy version of the related HRL
instance (say, Hi). In other words, Ei = η(Hi) where η is noise function. We
propose two novel noise augmentation strategies and apply them to the source
side (i.e., HRL) of HRL-to-English parallel data to obtain noisy proxy training
data for the ELRL-to-English MT task. The noise augmentation in HRL im-
proves lexical similarity between HRL and ELRLs. We learn the vocabulary,
train a stranded transformer neural network with this augmented data, and
perform the evaluation in a zero-shot setting with ELRLs. Noise augmentation
acts as a regularizer to account for lexical variances between HRL and ELRLs
and improve cross-lingual transfer.

We have proposed two novel noise augmentation approaches: (i) CharSpan
[MKDK24]: This approach randomly augments character span noise and does
not require any training resources in ELRLs other than alphabets. (ii) Select-
Noise [BMD23]: In this approach, noise augmentation character candidates are
extracted with Byte Pair Encoding (BPE) merge operations and edit operations.
Sampling algorithms are then used for noise augmentation. This approach is
systematic and linguistically inspired but requires small monolingual data (1000
examples) in ELRLs. These models are evaluated with multiple ELRLs across
different typologically diverse language families. Across all ELRLs and families,
the CharSpan and SelectNoise models achieved CharF gains of 9.46% and
11.31%, respectively, over the vanilla neural machine translation model.

1.3 Thesis Outline
This thesis extends generative NLP in two aspects: (1) applying NLG techniques to
two non-mainstream yet important NLG applications, namely, distraction generation
and personalized query auto-completions, and (2) extending NLG techniques to the
generation of text in low-resource languages. Considering these aspects, this thesis
is divided into two parts: advancing the frontier of NLG with constraints (Chapters
3 and 4) and enabling low-resource language generation (Chapters 5, 6, and 7). The
pictorial outline of the thesis is presented in Fig. 1.2 and is organized as follows:

• In Chapter 2, we provide the details of the background by introducing all the
basic concepts required to understand the work presented in this thesis. Par-
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Figure 1.2: Outline of the Thesis

ticularly, we introduce relevant NLG tasks, RNN and transformer architec-
ture, neural networks for NLG, language models, pre-training, and relevant
pre-trained models.

• Advancing the Frontier of NLG with Constraints : This part of the
thesis has the following two chapters:

– In Chapter 3, we describe a modeling approach that decouples the pas-
sage sentences and explores a multi-decoder technique to generate long,
coherent, and diverse distractors in the distractor generation task.

– In Chapter 4, we first motivate the problem of short and unseen prefixes in
PQAC, supported by quantitative analyses. We conclude that limited con-
text is the major reason for performance degradation. Subsequently, we
introduced a modeling framework inspired by Retrieval-Augmented Gen-
eration (RAG). Within this framework, we harnessed trie context augmen-
tation to address limited context problems and enhance the generation of
high-quality completions.

• Low-resource Language Generation: This part of the thesis has the fol-
lowing three chapters:

– In Chapter 5, we made our first effort in low-resource language generation.
This chapter deals with mitigating the catastrophic forgetting problem and
enabling well-formed zero-shot generation in low-resource languages across
four NLG tasks and three languages.
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– Chapter 6 presents an advancement over Chapter 5, where we employ a
meta-learning, model-agnostic meta-learning (MAML; [FAL17]), approach
to enhance cross-lingual transfer for low-resource languages across 30 LRLs,
two NLG tasks, and five public datasets.

– In Chapter 7, we extend language technology to extremely low-resource
languages (ELRL) by developing zero-shot machine translation systems for
the ELRL to English direction. Here, we proposed two noise augmenta-
tion approaches (CharSpan and SelectNoise) to enhance cross-lingual
transfer from closely related HRL and other ELRLs.

• In Chapter 8, we present important conclusions and highlight some interesting
future research directions.
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Chapter 2

Background

2.1 Introduction to Natural Language Generation
In this chapter, I will present the fundamental concepts necessary to understand the
thesis. This chapter offers a concise technical overview of relevant natural language
generation (NLG) tasks, Transformer architecture, various NLG architectures, pre-
trained language models (PLMs), and multilingual PLMs. These concepts will be
used in the subsequent chapters.

2.1.1 Defining Natural Language Generation Task

The natural language generation (or text generation) task can be framed as gen-
erating human-like output text y given input x. The input x can be text (e.g., in
abstractive text summarization task), a text-tuple (e.g., in question generation task),
an image (e.g., in image captioning task), or a multi-modal input (e.g., in dialogue
systems where the inputs consist of both images and conversation history). Some
NLG tasks, like query auto-completion, involve continuing the generation from the
input text/prompt. Formally, for a given input y1, y2, . . . , yt, the generation continues
as yt+1 . . . y|y|.

Zero-shot Generation: It is the ability of an NLG model to generate output text
in a language L (or domain D) without prior explicit labeled training in L (or D).
Few-shot Generation: It is the ability of an NLG model to generate output text
in a language L (or domain D) with limited labeled training examples N in L (or D).
Here N << M , where M is the total number of examples in training data.
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2.1.2 Relevant NLG Tasks

In this thesis, we have considered six NLG tasks, viz., distractor generation, query
auto-completions, abstraction text summarization, question generation, news head-
line generation, and machine translation. Details for each of the tasks are provided
below:

Distractor Generation (DG)

Given a reading comprehension MCQ, i.e., <passage, question, correct an-
swer> triplet, it is the task of generating multiple incorrect options, i.e., distractors.
The distractors should be coherent, grammatically correct, and confusing. There
can be multiple correct distractors for an input triplet. The ideal distractors should
be semantically related (but not semantically equivalent) to the correct answer and
in the context of the question. Table 2.1 presents a sample input triplet and three
distractors.

Passage

Ole bull was a very famous violinist from norway. He really liked to play the violin.
But his father thought that playing the violin was not useful. So his father sent him to
university to study. However, playing the violin was his dream. He did n’t want to give
up his dream. So he left university before he finished his studies and spent all his time
and energy practicing the violin. Unfortunately, his violin teacher was not very good.
So when it was time for him to start his concert tour, he still couldn’t play the violin
very well. Therefore, a milan newspaper critic criticized him and said that he was an
untrained violinist. When facing this kind of problem, some people may become very
angry and some people try to learn from it. Fortunately, ole bull belonged to the second
group. He went to the newspaper office and found the critic. Instead of being angry, he
talked about his mistakes with the man and listened to the man’s advice. After he met
the critic, he gave up the rest of his concerts. Then he went back to practice the violin
with the help of good teachers. In the end, he got great success when he was only 26.
He also became one of the most famous violinists in the world.

Question Why didn’t ole bull’s father like him to play the piano?
Correct Answer Because he thought playing the violin was useless.
Distractor - I Because playing the violin would cost lots of money.
Distractor - II Because the violin was not good.
Distractor - III Because he didn’t like to play the violin.

Table 2.1: Sample triplet and corresponding distractors from Race dataset [LXL+17] for
DG task.

Query Auto Completions (QAC)

Let us consider a user is interacting with a search engine and has entered the previous
n search queries in a session. Currently, the user is typing the prefix of a search query.
The QAC is a task of generating top-k completions, given session and prefix. A sample
session, prefix, and completions are shown in Table 2.2.
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Session hurricane resistant || hurricane lines || houston
crap || houston crap plan || hurricane climate

Prefix hurricane climate actio
Completion 1 houston climate action plan
Completion 2 houston tx climate action plan
Completion 3 houston climate controlled storage
Completion 4 houston climate control storage
Completion 5 houston climate today

Table 2.2: Sample session, prefix, and top-5 completions from Bing search engine for QAC
task. ’||’ is search query separator in session.

Abstraction Text Summarization (ATS)

Given an input document, the task is to generate an abstractive human-like summary.
The summaries are expected to be coherent, concise, grammatically correct, and to
faithfully represent the information from the document. A sample input document
and headline summary are shown in Table 2.3.

Document

Police were called to the scene outside the Coral shop on Compton Road in
Harehills just before 14:00 BST. The man was taken to hospital for treatment
but his condition is not known. West Yorkshire Police said the area has been
cordoned off and officers remain at the scene. The force has appealed for
information.

Summary A man has been stabbed in broad daylight outside a betting shop in Leeds.

Table 2.3: Sample document and corresponding summary from XL-Sum dataset [HBI+21]
for ATS task

News Headline Generation (NHG)

This task is closely related to the ATS task. Given input news articles, the task
is to generate concise, grammatically coherent, semantically correct, and abstractive
human-like headline. A sample input news article and the corresponding headline are
shown in Table 2.4.

News Article
Scientists have discovered a new species of butterfly in the Amazon rainforest.
The butterfly exhibits vibrant colors and unique wing patterns, making it a
significant find for biodiversity researchers.

Headline New Butterfly Species Discovered in Amazon Rainforest

Table 2.4: Sample news article and corresponding headline from PENS dataset [AWL+21]
for NHG task.

Question Generation (QG)

Given an input passage and correct answer, the task is to generate semantically
and syntactically correct questions that can produce the answer. Any question-and-
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answering (Q&A) data can we used for question-generation tasks. Sample passage,
answer, and question are shown in Table 2.5.

Passage

The Joan B. Kroc Institute for International Peace Studies at the University of Notre Dame
is dedicated to research, education and outreach on the causes of violent conflict and the
conditions for sustainable peace. It offers PhD, Master’s, and undergraduate degrees in
peace studies. It was founded in 1986 through the donations of Joan B. Kroc, the widow of
McDonald’s owner Ray Kroc. The institute was inspired by the vision of the Rev. Theodore
M. Hesburgh CSC, President Emeritus of the University of Notre Dame. The institute has
contributed to international policy discussions about peace-building practices.

Answer President Emeritus of the University of Notre Dame
Question What is the title of Notre Dame’s Theodore Hesburgh?

Table 2.5: Sample passage, answer and question from SQuAD dataset [RZLL16a] for QG
task

Low-Resource Language Generation

It is the task of generating textual output from a given task with a limited amount
of training data or linguistic resources. In this thesis, we have considered those low-
resource languages (LRLs) for which the learning data or resources are limited. In this
scenario, typical learning is enabled through other high-resource languages (HRL) via
cross-lingual transfer. Generations are performed in a zero-shot and few-shot setting.
The low-resource language generation processes (zero-shot and few-shot) are depicted
in Fig. 2.1.
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Figure 2.1: Illustration of zero-shot and few-shot process for low-resource language genera-
tion. Multilingual representation and Cross-lingual transfer help in LRL generation. Here,
we consider abstractive text summarization as an example NLG task.
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Cross-Lingual Transfer and Generation

Following Vu et al. [VBL+22], cross-lingual transfer and generation1 is a task in
which a model learns a generative task from labeled data in one language (typically
English) and then performs the equivalent generative task in another language. Cross-
lingual transfer facilitates low-resource language generation and is often referred to
as cross-lingual generation. A sample cross-lingual generation process is depicted in
Fig. 2.1.

2.1.3 Evaluation Metrics

Now, we briefly discuss the multiple automated and human evaluation metrics that
are popular in the literature. These metrics have been used in this thesis to evaluate
different models across various tasks. The multilingual variants of each automated
evaluation metric are obtained by modifying the corresponding tokenizer, stemmer,
and so on.

Automated Evalution Metrics

For each of them, we assume the generated text is evaluated with one or more reference
texts. This excludes theMRR and BLEURR metrics, which are information retrieval
metrics. These two metrics focus on evaluating k-ranked generations, comparing them
against a single reference. Below is a brief overview of each of these metrics:

• Bilingual Evaluation Understudy (BLEU; [PRWZ02a]): BLEU is a
precision-based evaluation metric that measures the exact lexical match be-
tween a machine-generated text and human reference text. It calculates the
percentage of overlapping n-grams between the generation and the reference.
As this is a precision-oriented metric, to have meaningful scores for short gen-
erations, a brevity penalty is added in the BLUE score computation.

• Recall-Oriented Understudy for Gisting Evaluation (ROUGE; [Lin04a]):
ROUGE is a family of metrics used for evaluating the quality of the generated
text, particularly in abstraction generation applications like text summarization
and headline generation. It is a lexical overlap-based metric. ROUGE measures
the recall of n-grams and word sequences in the generated text with respect to
reference summaries.

1In this thesis, we use the term cross-lingual transfer and generation and cross-lingual generation
interchangeably.
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• Metric for Evaluation of Translation with Explicit ORdering (ME-
TEOR; [LD09]): METEOR is an improvement over the BLEU metric, as
it allows for a flexible (approximate) match, unlike BLEU, which requires an
exact match. For flexible matching, METEOR considers a combination of fac-
tors, such as unigram precision, recall, stemming, synonymy, and word order
alignment, focusing on the explicit ordering of words.

• BERTScore [ZKW+20]: BERTScore is a metric that utilizes pre-trained
BERT models [DCLT18] to evaluate the quality of generated text. It measures
the similarity between token embeddings in the generated text and the reference
text based on contextual information.

• Character F-score (ChrF; [Pop15]): ChrF is a character-level evaluation
metric to assess machine translation quality. It considers character overlap, edit
distance, and character n-grams to assess the quality of translation between the
generated and reference translations.

• Bilingual Evaluation Understudy with Representations from Trans-
formers (BLEURT; [SDP20]): It is a learned evaluation metric based on
BERT representation and a few thousand human judgments. Primarily intro-
duced for machine translation tasks but extended to many NLG tasks. It is
also viewed as an extension of the BLEU metric.

• Cross-lingual Optimized Metric for Evaluation of Translation (COMET;
[RSFL20]): It is an adaptable MT evaluation metric based on cross-lingual
pre-trained language modeling that exploits information from both the source
and a reference target to predict MT quality accurately. It is currently a default
choice for the MT task.

• Mean Reciprocal Rank (MRR; [SMR08]): MRR is an information re-
trieval metric that calculates the mean of the reciprocal ranks of the first match
of reference query with ranked generated queries. It is commonly used to assess
the effectiveness of search and ranking systems.

• BLEU Reciprocal Rank (BLEURR; [YSH+21]): It is an extension of MRR
metric to relax exact match as done in MRR. It is defined as weighted MRR,
where the weights are the BLEU score between the reference query and gener-
ated queries.
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Human Evaluation Metrics

There are two primary human evaluation methods for assessing machine-generated
text quality: direct evaluation and relative evaluation. In direct evaluation, evaluators
independently rate the generated text from different models. In relative evaluation,
two or more generations from different models are compared and ranked in relation
to each other to determine the best models. These two evaluation methods employ
the following one or more popular human evaluation metrics [KSB+22]:

• Fluency: This metric is quantified by measuring how fluent the generated text
is?. In direct evaluation, the scale is 1 (indicating non-fluent) to 5 (indicating
very highly fluent).

• Relatedness: This metric is quantified by measuring how much of the gener-
ated text is related to input or in context with input?. In direct evaluation, the
scale is 1 (indicating not at all related) to 5 (indicating very highly related).

• Grammatical Correctness: This metric is quantified by measuring how
grammatically correct the generated text is?. In direct evaluation, the scale
is 1 (indicating not at all grammatical correctness) to 5 (indicating very high
grammatical correctness ).

• Distractability: This metric is quantified by measuring How confusing dis-
tractors are?. In direct evaluation, the scale is 1 (indicating not at all confusing)
to 5 (indicating very highly confusing).

2.2 Neural Networks for NLG Tasks
Neural Network: The neural network, also known as an Artificial Neural Network
(ANN), is a computational model inspired by the structure and function of the human
brain. It comprises interconnected nodes, or artificial neurons, organized in layers.
Typically, the network consists of multiple layers, with each layer receiving input
from the previous layer and forwarding its output to the next layer. The network (or
model) has numerous parameters, and during the training process, these parameters
(also known as weights) are updated to learn generalization features/patterns. The
training process consists of two phases: forward pass and backward propagation. First,
the neural network weights undergo random initialization. Subsequently, the forward
pass commences, wherein input is propagated through the network, resulting in out-
put from the final layer. Following this, the output is employed to calculate the loss
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(error/cost function) with the model’s predictions to the actual reference. Upon com-
puting the loss, backward propagation is performed to update (adjust) the network
weights. This iterative process is repeated with a large number of examples until the
model converges. The optimized model is then capable of generalizing its predictions
to unseen examples, i.e., predicting close to the true target value. Neural networks
are the foundation for many advanced deep learning architectures, including convolu-
tion neural networks (CNNs), recurrent neural networks (RNNs), and Transformers.
Deep learning models, with their deep neural networks, have achieved remarkable
success in various fields, leading to breakthroughs in tasks like image recognition,
natural language technology, and autonomous decision-making. More details of these
foundational concepts are presented by Goodfellow et al. [GBC16].

Sequence-to-Sequence Neural Network: Within the scope of this thesis, we have
focused on a specific category of neural networks known as sequence-to-sequence or
encoder-decoder neural network. A sequence-to-sequence network could refer to any
model that takes a sequence as input and generates a sequence as an output. This ar-
chitecture is particularly suitable for natural language generation (NLG) tasks where
both the input and output are sequences. Typically, a sequence-to-sequence network
comprises two key modules: the Encoder and the Decoder. The encoder module is
responsible for encoding the input, and the decoder module generates the output.
The encoder module has two components: an embedding layer and contextual layers.
In the embedding layer, words are transformed into d-dimensional vector representa-
tions. The contextual layer takes these representations and captures how each word
interacts within the input, resulting in contextual representations for all the words
in the input sequence. Multiple contextual layers are stacked on top of each other to
capture different aspects of the input. The decoder module has a similar architecture
but generates the target output sequence in an auto-regressive manner. The output is
generated by conditioning on the input context and the previously generated words.
This involves a language modeling task where the probability of the current word de-
pends on prior words and the context. The contextual representation obtained from
the last layer of the encoder is employed as the context in the decoder. Although there
exist Decoder-only sequence-to-sequence models like GPT3 [BMR+20], or BLOOM
[SFA+22], in this thesis, we have focused only on encoder-decoder neural networks.
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2.2.1 RNN Sequence-to-Sequence Neural Network

Recurrent Neural Network (RNN): An RNN is a type of neural network archi-
tecture designed for processing sequential data. It is particularly suitable for tasks
where data has a sequential or temporal nature, as in NLP, time series analysis, and
speech recognition tasks. RNNs have a recurrent connection, which allows them to
maintain and update a hidden state as they process each element of a sequence. This
hidden state captures information from previous elements, enabling RNNs to model
dependencies and patterns in sequential data. In the backpropagation, the gradients
(derivatives of the loss with respect to the model parameters) are computed and used
to update the model parameters. However, if the input sequence is long, gradients
can become extremely small as they are propagated backward through time. This is
called a vanishing gradient problem.

Long Short-Term Memory (LSTM): It is a specialized type of RNN architecture
that reduces the effect of vanishing gradient as in standard RNNs. It is designed
to capture long-term dependencies in sequential data. LSTMs incorporate memory
cells and gates that control the flow of information. They can retain and selectively
update information over longer sequences, making them well-suited for tasks that
involve understanding and remembering context over time.

RNN/LSTM Sequence-to-Sequence Network: It is the standard sequence-to-
sequence network in which the encoder and decoder modules are replaced with an
RNN or LSTM network. The last token representation from the last layer of the
LSTM/RNN input is referred to as the encoder context and is utilized by the decoder
during generation. To capture long-term context from the encoder, the attention
module is used in the sequence-to-sequence model. It is used to improve the model’s
ability to capture and weigh different parts of the input sequence during the generation
of the output sequence. Consequently, the model dynamically considers important
aspects of the input. These models are commonly referred to as attention-based
sequence-to-sequence models.

With these efforts, the problem of the vanishing gradient is reduced but not com-
pletely mitigated. Additionally, in RNNs, the input is processed sequentially, which
inhibits parallel processing and leads to slow training. To overcome these limitations,
the Transformers neural network was introduced by Vaswani et al. [VSP+17], based
solely on the attention mechanism. Next, we will discuss transformer architecture in
detail.
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2.2.2 Transformers Sequence-to-Sequence Neural Network

Transformer Architecture: Vaswani et al. [VSP+17] proposed the Transformer
neural network architecture powered with self-attention mechanism. It is a more
complex model than ANNs, RNNs, and LSTMs. The key idea is self-attention, by
which a representation at a position is computed as a weighted combination of repre-
sentations from other positions. In Transformer, the input sequence of word vectors
X represents a corresponding query sequence vectors Q, key sequence vectors K,
and value sequence vectors V . Each vector has dim d. The key and query at every
position are compared to calculate how much attention to pay to each position (i.e.,
self-attention); based on this, a weighted average of the values at all positions is cal-
culated (see Equation 2.2). This operation is repeated many times at each level of
the transformer neural net, and the resulting value is further manipulated through
a fully connected neural network layer and through the use of normalization layers
and residual connections to produce a new vector for each word. This whole process
is repeated many times, giving extra layers of depth to the transformer neural net.

K = WKX,Q = WQX,V = WVX (2.1)

SelfAttention(Q,K, V ) = softmax

(
QKT

√
d

)
V (2.2)

This architecture enables parallel input processing and mitigates vanishing gra-
dient problems. As the input is processed parallel, the word order information is
injected by adding position embeddings [VSP+17, GAG+17] with each word embed-
ding before the self-attention operations. Due to the impressive performance in terms
of modeling power and training speed, Transformer neural networks become de-facto
in NLP modeling nowadays.

Transformers Sequence-to-Sequence Network: Here, both the encoder and de-
coder modules are Transformer networks. Further, the decoder employs additional
attention called encoder-decoder/cross-attention, which selectively focuses on the en-
coder’s context in the decoder during the generation process. The generation process
with the decoder is auto-regressive in nature.

2.2.3 Tokenization Techniques

Given input text X = {x1, x2 . . . x|X|}, how to transform this into the embedding
sequence E = {e1, e2 . . . e|E|} that can be passed as input to the neural network
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model? In the past, a fixed vocabulary was defined, and common words were assigned
word embeddings (either random or from word2vec/GloVe), while rare or out-of-
vocabulary or unknown words were represented as <UNK> leading to a lack of word
identity information. To address this issue, more successful subword tokenization
techniques emerged. These tokenizers break the words into smaller, frequent sub-
words. For example, the word ‘unhappy’ can be segmented into two smaller units
‘un’ and ‘happy’. One of the popular subword segmentation techniques is Byte Pair
Encoding (BPE; [SHB16b]). The idea behind BPE is to iteratively replace the most
frequent pair of character n-grams in a sequence with a single, unused character n-
gram. BPE allows the model to encode and generate any Unicode string as a sequence
of in-vocabulary tokens; while more common words have their own embeddings, rarer
words are split into smaller pieces with their own embeddings. Below are informal
steps to create BPE vocabulary:

1. Initialize with Character Vocabulary: Start with a character-level vocab-
ulary where each character is considered a token.

2. Represent Input Text: Represent input text data using this character-level
vocabulary. Each word is split into a sequence of characters, and a special
end-of-word symbol (e.g., ’</W>’) is added to indicate the word boundaries.

3. Count Symbol Pairs: Iterate through input data and count the frequency of
all symbol pairs.

4. Merge Most Frequent Pair: Identify the most frequent pair in the input
data. This pair will be merged, and replace all occurrences of this pair with the
new merged symbol.

5. Update Vocabulary: Add the newly created merged symbol to your vocab-
ulary.

6. Repeat: Repeat steps 3 to 5 for a predefined number of iterations or until a
certain vocabulary size is reached.

This approach is beneficial for handling languages with complex morphology, ag-
glutinative languages, and out-of-vocabulary words. Subword tokenization enables
efficient multilingual support, improved generalization, and reduced vocabulary size,
making it a fundamental tool for building versatile and memory-efficient NLP mod-
els. There are many other subword tokenization methods like sentencepeice [KR18]
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similar to/based on BPE. Usually, each sequence appends with two special tokens:
<START> and <END>. In training RNNs or Transformers, the <START> token is
typically the first input (y1) at the initial timestep. This guides the model to learn
when to stop generating by predicting the <END> token.

2.2.4 Training and Evaluation of NLG Neural Network

Maximum Likelihood Estimation (MLE) Training: As previously mentioned,
training neural networks usually entails end-to-end training through forward and
backward propagation, adjusting weights using optimizers such as stochastic gradient
descent (SGD). The training objective, known as maximum likelihood estimation
(MLE), quantifies how well the model fits the target data. MLE is essentially the
negative log-likelihood of the target data based on the encoder-decoder model, which
is equivalent to measuring the cross-entropy loss between the data distribution and
the model. Formally, given training examples (x, y) ∈ Dtrain, the cross-entropy loss
for an encoder-decoder model (M) is:

CrossEntropy(Dtrain) = − 1

n

∑

(x,y)∈Dtrain

logPM(y|x) (2.3)

Where n is the total number of tokens in the output sequences y.

Text Generation: Generating text with encoder-decoder NLG models is a two-
step process. First, the encoder processes the input data to create a context vector.
Second, the decoder utilizes this context vector to produce the output sequence, one
token at a time, with a decoding algorithm. The choice of decoding algorithms, such
as greedy, beam search, or sampling techniques, impacts how the output generation
is required. This process is often referred to as “conditional generation” because it is
conditioned on the input context.

2.3 Pre-training of Neural Network Models
In this section, we will briefly review recent advancements in various types of transformer-
based language models and their pre-training processes. We will also discuss how these
language models are adapted for multilingual setups. Finally, we will wrap up this
section by mentioning the relevant language model used in this thesis.
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2.3.1 Language Models

The Language Model (LM) aims to model the generative likelihood of word sequences
in order to predict the probabilities of future (or missing) tokens. Due to the paral-
lelization and capacity, the Transformer has become the de-facto backbone to develop
various language models as they are scalable to hundreds or thousands of billions of
parameters. The following are the three major architectures of language models:

Encoder-only Language Models: These language models utilize only the encoder
part of the transformer model for language modeling. They are typically modeled us-
ing a masked language model objective and are also referred to as Masked Language
Models (MLMs). Their primary objective is to predict the identity of masked tokens
in a token sequence y. For example, in the input sequence ‘I love <MASK> book.’, the
language model predicts the token that is most likely to replace <MASK>’. Formally,
for a text token sequence y1, . . . , yt−1, yt+1, . . . , y|y|, the encoder-only model calculates
the probability of a masked token with encoder-only language models (PEnc) as fol-
lows:

PEnc(yt|y1, . . . , yt−1, yt+1, . . . , y|y|) (2.4)

A few popular encoder-only models are BERT [DCLT18] and ROBERTA [LOG+19].

Decoder-only Language Models: These language models generate the next token
(or continuations of text) of input text sequence or assign a probability PDec(y) to
a sequence of text y (e.g., for ranking task). These models are also called as Causal
Language Models (CLM). The probability of sequence can computed using the chain
rule with decoder-only language models (PDec) as follows:

PDec(y1, y2, . . . yt) = Πt
i=1PDec(yi|y1, y2, . . . , yt−1) (2.5)

A few popular decoder-only language models are GPT [RNS+18, BMR+20] and
BLOOM [SFA+22].

Encoder-Decoder Language Models: These language models assign probability
P (y|x) to a text sequence y given some input x. These language models consist of both
encoder and decoder modules. The encoder adapts stacked multi-head self-attention
layers to encode the input sequence for generating its latent representations while
the decoder performs cross-attention on these representations and auto-regressively

23



generates the target sequence. These encoder-decoder language models have denoising
objectives where the modeling has to generate the correct input sequence from a noisy
input. It is called denoising auto-encoding (DAE). The noise can be token masking,
span masking, sentence order permutation, and so on. Few popular architectures are
BART [LLG+19] and T5 [RSR+20a]. In DAE modeling, the generated correct output
text y is conditioned on some noisy/corrupted input x or computes the conditional
probability of a given (x, y) pair with encoder-decoder language models language
model PEncDec as:

PEncDec(y1, y2, . . . yt|x) = Πt
i=1pEncDec(yi|y1, y2, . . . yt−1, x) (2.6)

All three language models can also be used to obtain the embedding representation
for input sequences, which can be further utilized in downstream NLP applications.
This representation serves as a powerful warm-up or starting point for any neural
network. Decoder-only LMs predict the next token based on the left context (i.e.,
auto-regressive), while encoder-only LMs use bidirectional context for prediction. The
encoder-decoder LMs have both bidirectional context and auto-regressive generation,
making them more effective and suitable for NLG tasks. Moreover, masked language
models are not generally intended or used to generate text, with some exceptions.
Considering this, in this thesis, we have used only encoder-decoder-based language
models.

2.3.2 Pre-training and Fine-Tuning of Language Models

The remarkable modeling capabilities of Transformer networks are indeed exciting;
however, the training of these neural networks depends heavily on the availability of
large annotated datasets. This presents a challenge for downstream applications and
low-resource languages where the annotated data is limited. To address this chal-
lenge, pre-training-based modeling was emerged as a hopeful direction and currently
a dominating paradigm in NLP. This paradigm has two phases: pre-training and
fine-tuning.

• Model Pre-training: In the pre-training phase, a language model (with a
large number of parameters) is trained on a large text corpus, consuming thou-
sands of GPU hours. The core objective of pre-training is to enable the model
to learn statistical patterns, relationships, and data representations. It in-
volves training the model with denoising auto-encoding (DAE) objectives, i.e.,
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predicting missing words, sentence permutation, and so on. Pre-training is
unsupervised and often referred to as self-supervised training.

• Fine-Tuning: After the pre-training phase, the model undergoes fine-tuning
for a specific downstream task. Fine-tuning is the process of adapting the pre-
trained model to a task with a minimal number of training examples. It is a
form of supervised learning as it relies on labeled data. The fine-tuning process
capitalizes on the general language understanding acquired during pre-training
to enhance performance on the particular task. This knowledge transfer (also
known as Transfer Learning) often results in improved performance even with
limited amounts of task-specific data.

2.3.3 Multilingual Pre-training of Language Models

In this thesis, we have mostly utilized the multilingual variants of encoder-decoder
language models. Therefore, here, we will restrict our discussion to only encoder-
decoder LMs in a multilingual context. The underlying model architecture for most
multilingual LMs is similar to the base (English) LMs. The training of multilingual
LM extends the denoising auto-encoding (DAE) objective in multilingual setup as
follows:
Multilingual Denoising Auto-Encoding (mDAE): Given monolingual text data
covers K languages: D = D1, D2, . . . , DK where each Di is a collection of monolingual
documents in language i. We train an encoder-decoder language model to predict the
original textX given η(X), where η is the noise function. While training, we minimize
mDAE loss (Lθ) as:

Lθ =
∑

Di∈D

∑

X∈Di

logPEncDec(X|η(X); θ) (2.7)

where θ is model’s learning parameter and X is an instance in language i. For
each instance of a batch, a random language is sampled, and corresponding language
sentences are packed until it reach the document boundary or reaches the maximum
token length limit. The language model is trained with this batch using a DAE self-
supervised training objective. This process is repeated for many batches and epochs
until the model’s perplexity converges. This will allow the model to represent many
languages in a common latent representation space. Few popular models are mT5
[XCR+21] and mBART [LGG+20d]. It is demonstrated [HRS+20] that these multi-
lingual pre-trained language models are effective in many downstream applications
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in multiple languages. Additionally, this drives the cross-lingual modeling to enable
zero-shot and few-shot evaluation/generation.

2.3.4 Relevant Pre-trained Language Models

In this thesis, we have used the following pre-trained language model for multiple
NLG tasks:

• GPT2 [RNS+18]: GPT2 is the decoder-only language model that is trained
with the next token prediction objective in an auto-regressive manner. This is
the underlying objective for large models like GPT3 [BMR+20] and BLOOM
[SFA+22]. The model has different checkpoints depending on the number of
model parameters/layers.

• BART [LLG+19]: BART is a pretraining sequence-to-sequence model trained
with a denoising autoencoder objective. It is trained using corrupted text gener-
ated by an arbitrary noising function and learns to reconstruct the original text.
The base version of the model consists of 6 layers of transformer encoders and
6 layers of decoders. It is evaluated across a wide range of NLG tasks, includ-
ing abstractive text summarization and dialogue response generation, among
others.

• mBART [LGG+20d]: It is a multilingual version of the BART model with a
multilingual DAE objective. The model has two versions, one with 25 languages
and the other with 50 languages. The model was evaluated with the machine
translation task.

• mT5 [XCR+21]: It is multilingual version of the T5 [RSR+20a] pre-trained
sequence-to-sequence model. The model is pre-trained with 101 languages. T5
has a DAE objective in which the model predicts missing input tokens/spans.
T5 is designed to handle a wide range of NLP tasks in a unified manner. The
key idea behind T5 is to cast all NLP tasks into a text-to-text format, where
both input and output are represented as sequences of text. This allows the
use the same model, loss function, hyperparameters, etc., across a diverse set
of tasks.
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Chapter 3

Advancing Frontiers of NLG:
Distractor Generation

3.1 Introduction
This chapter presents our first efforts in the natural language generation with tra-
ditional Long Short-Term Memory (LSTM)-based [HS97] modeling for diverse text
generation within the Distractor Generation (DG) task. This work was carried out
in a time span when the LSTM-based deep learning models were the preferred choice
over emerging Transformers models. First, let us understand the distractor generation
task and associated challenges.

Reading comprehension (RC) is recognized as an advanced cognitive task in NLP,
which involves both shallow and deep understanding of articles to carry out com-
plex inferences. A person can demonstrate his/her understanding of an article by
answering questions about the article. Particularly, multiple-choice questions read-
ing comprehension (RC-MCQ) is a popular assessment technique to judge human
understanding. It provides several advantages, including fast, unbiased, quick, and
consistent evaluation. In the classical convention, MCQ consists of a triplet: (1)
question, (2) correct answer, and (3) distractors or the incorrect answers to confuse
examinees [CS18]. Out of the three components, the creation of high-quality dis-
tractors is an important, challenging, and time-consuming task [WLG17]. According
to Goodrich et al. [Goo77], ideal distractors should be semantically related (but not
semantically equivalent) to the correct answer and in the context of the question.
Therefore, automation of the distractor generation process is challenging but, at the
same time, beneficial to target audiences. We aim to leverage LSTM-based deep
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learning models to generate long, grammatically correct, and non-obvious/confusing
distractors.

The distractor generation system can be utilized for educational purposes in lan-
guage learning assessment. As a reverse task, the system can also be used to auto-
matically create annotated datasets to push research in reading comprehension and
Question and answering (Q&A) tasks. Additionally, the variant of distractor gener-
ation models can be used for many other NLG applications: (1) generating diverse
utterances for a monotonous input/state in conversational systems, (2) generating
diverse headlines for an input article to attract a large audience and many more.

In order to generate good distractors that are semantically correct but not equiva-
lent to the correct answer, we try to understand how humans usually extract distrac-
tors. According to our understanding, humans generally follow a two-step generation
process - (a) search for article sentences that are in context with the question and
(b) avoid sentences that are semantically equivalent to the answer. The resultant
sentences are potential candidates for distractor generation. Inspired by the hu-
man approach, we adapted a data-driven, sequence-to-sequence learning framework
to address the problem of automated distractor generation. We propose a novel hi-
erarchical multi-decoder network (HMD-Net). In HMD-Net, we first obtain the
contextual word-level and sentence-level representations of the article by a hierar-
chical encoder. Additionally, word-level representations are learned for question and
answer separately. Then, we use SoftSel operation and Gated Mechanism to capture
rich semantic relations among these components. On the decoder side, we used three
different decoders with a dis-similarity loss to generate three distractors. Three de-
coders learn to generate three diverse distractors from candidate sentence(s) so that
they have similar contexts but are not the same.

We carefully reviewed the generated text from HMD-Net and observed that there
are sentences that have gender errors, morphological errors, etc. A few examples are
“She is good at solving maths.” where, based on the context, the correct sentence
should be: “He is good at solving maths.” and “Mr. Robert went last months.” where
the correct sentence is: “Mr. Robert went last month.” This indicates that the model
sometimes fails to learn the linguistic properties of the word. To eliminate such prob-
lems, we externally included linguistic feature representation along with word repre-
sentation in HMD-Net as used in the task of machine translation in [SH16]. Finally,
to capture the contextual representation of words, we leveraged the representation
from the BERT [DCLT18] model. We evaluated our system on two datasets, RACE
DG [GBL+19] and RACE++ DG dataset (prepared by us) across seven automated
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(word-overlap based: BLEU, ROUGE, and METEOR and embedding-based) met-
rics and two manual evaluation metrics (grammatical correctness and distractibility).
Additionally, we checked how confusing the generated distractors are by performing
the human assessment. Our extensive experimentation exhibits that our model con-
sistently outperformed all the previous baselines and emerged as a state-of-the-art
model.

Our key contributions with this work are listed below:

1. We propose a novelHMD-Net [MD20a]: Hierarchical Multi-Decoder Network
to tackle the task of automated distractor generation. It is an end-to-end, data-
driven model to generate three diverse distractors from three decoders.

2. We utilize SoftSel operation and Gated Mechanism to ensure the generated
distractors are in context with questions but not semantically similar to the
correct answer.

3. We introduce a novel dis-similarity loss in HMD-Net for distractor generation
and a new BERT cosine similarity (BERT-CS) based metric for automated
evaluation.

4. We release a new high-quality distractor generation dataset RACE++ DG 1,
prepared from RACE++ dataset by leveraging contextual similarities among
the different components of the data instances by using a state-of-the-art con-
textual representation - BERT model. We conduct further analyses and evalu-
ations to ensure the quality of the dataset.

3.2 Related Work
The task of automated distractor generation (DG) is aligned with the multiple choice
question (MCQ) generation research direction. Traditionally, rule/heuristic-based
distractor generation models use approaches like different similarity measures, on-
tology, and embedding for distractor selection [CS18]. However, in almost all cases,
the granularity of generated distractors is limited to word-level or phrase-level. With
advancements in deep learning, the generation of long and coherent distractors using
learning-based approaches is receiving a lot of attention. A brief overview of tra-
ditional and deep learning-based approaches for automated distractor generation is
presented below:

1code and data link: https://github.com/kaushal0494/HMD_Network
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3.2.1 Traditional Approaches

Traditional methods for DG used linguistic resources like WordNet [M+03] and The-
saurus [SSY05] for determining conceptual similarity and used that information to
generate the distractors. Later, linguistic properties like morphological and phonetic
similarities [PE09], n-gram co-occurrence [HS16], and context similarities [PHE08]
were used for extracting distractors. More popular traditional approaches use embedding-
based similarities [GKK+16, JL17] between text representations obtained using GloVe,
word2vec, and so on. Zesch et al. [ZM14] proposed a popular two-step process: (1)
compute the ranking of potential candidate texts by a weighted combination of dif-
ferent similarity metrics and (2) check the reliability of candidate distractors using
contextual information. However, with these models, the granularity of generated
distractors is limited to word-level or phrase-level - limiting their practical uses.

3.2.2 Learning Based Approaches

Early neural approaches for DG were oriented towards a learning-to-rank framework.
Few popular approaches [SAK13, LYW+17] viewed the distractor generation problem
as a multi-class classification problem. The model proposed in [LYW+17] learns
distractor-distribution conditioned on the question using generative adversarial nets
(GANs). A method to generate distractors for fill-in-the-blank questions was proposed
in [SAK13]. Liang et al. [LYD+18] used feature-based ensemble and neural net-
based models to rank distractors. Two recent works close to our line of research are
presented in [GBL+19] and [ZLW20]. Gao et al. [GBL+19] focuses on static and
dynamic attention from a hierarchical encoder-decoder model. Static attention helps
to identify candidate sentences from the article, and dynamic attention is then used
to generate distractors. In an improvement over this, Zhou et al. [ZLW20] exploits
information across articles and questions using the co-attention mechanism. They
apply Jaccard Similarity (JS) to sample three distractors over a pool of distractors
generated by beam search. The Jaccard similarity-based distractors sampling leads to
distractors that are different at the lexical level, but either they are not in context with
the question or too obvious for the end-user to eliminate. There were no precautions
taken by [ZLW20] to ensure that generated distractors should not be answer-revealing
or semantically equivalent to the answer as they did not consider answer text in the
model. Our novel framework mitigates these limitations and generates long, robust,
and confusing distractors.
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3.3 Problem Statement
In automated distractor generation, we aim to generate long, coherent, grammatically
correct, and confusing wrong options given a triplet <article/passage, ques-
tion, correct answer>. Generated distractors should be in the context with
the question but should not be semantically equivalent to the answer. Formally, let
S = ⟨s1, s2, . . . sp⟩ denote the input article/passage with p sentences; Each sentence
si is word sequence of length k i.e., si = ⟨wi,1, wi,2, . . . wi,k⟩. The question is de-
noted by Q and is a sequence of n words, Q = ⟨q1, q2, . . . qn⟩. The word sequence
A = ⟨a1, a2, . . . al⟩ of length l denotes the answer. The three distractors are rep-
resented as Di = ⟨di,1, di,2, . . . di,ui

⟩ for i = {1, 2, 3} where ui is the length of ith

distractor. Our goal is to generate D1, D2, and D3 given the triplet ⟨S,Q,A⟩.

Di = argmax
D̄i

log P (D̄i|S,Q,A; θi) (3.1)

log P (D̄i|S,Q,A; θi) is conditional log-likelihood of ith distractor and θi is parameters
associated for ith distractor.

3.4 Methodology

3.4.1 Model Overview

The standard LSTM-based sequence-to-sequence architecture for automated distrac-
tor generation can be a primary choice. However, these model suffers due to the
large size of the input article (RACE datasets have 342 tokens/article on aver-
age). To mitigate this, the hierarchical sequence-to-sequence models were explored
[GBL+19, ZLW20]. Further, these models are suitable for generating a single dis-
tractor and fail to generate multiple distractors correctly. In this paper, we propose
an advancement over the hierarchical sequence-to-sequence model and add multiple
decoders to overcome the stated limitations.

As our goal is to generate three diverse distractors, we view this problem as
a one-to-many mapping modeling setup, i.e., a single encoder for input triplet and
three decoders for generating three distractors. At the Encoder Side, we first obtain
the contextual word-level and sentence-level representations of the input triplet by
the hierarchical encoder. Then, we use SoftSel operation and Gated Mechanism to
capture rich semantic relations among the components of the triplet. This semantic
information is exploited to find relevance scores for article sentences. The scoring
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Figure 3.1: Architectural diagram of the proposed Hierarchical Multi-Decoder Model (bet-
ter viewed in color)

decouple sentences that are in context with the question but are not semantically
equivalent to the correct answer. Sentences with high relevance scores are potential
candidates for distractor generation. At the Decoder Side, we employed a multi-
decoder model with a combination of cross-entropy and dis-similarity loss to generate
three distractors. This novel architecture is trained in an end-to-end manner to
generate high-quality diverse distractors. The training datasets consist of less than
three distractors (∼2.1 for RACE and ∼2.3 for RACE++) for many input triplets
(see Table 3.1), which poses additional challenges. Hence, we consider each training
example as 4-tuples, i.e., <article, question, correct answer, distractor>
where <article, question, correct answer> is input and <distractor> is
target. For instance, if a triple has two distractors, then this forms two separate
training examples. During inference, the model generates three distractors for each
input triplet. Fig. 3.1 presents an architectural overview of the proposed HMD-Net.
We now present a detailed description of each component of our proposed HMD-Net
model.

3.4.2 Hierarchical Encoder

In this section, we describe the different components of the encoder. The flow diagram
of the hierarchical encoder is shown in Fig. 3.2.
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Figure 3.2: Flow diagram of Hierarchical Encoder (better viewed in color)

Input Word Embedding

We obtain word embedding for each component of the input triplet in two different
ways.

1. We use pre-trained GloVe embedding to map words/tokens to vector represen-
tations. In addition, four linguistic feature representations are concatenated
with each token. These features are: Parts of Speech tags (f1), Named Entities
(f2), root form (lemma) of the word (f3) and Dependency Parsing Labels (f4)
extracted from Stanford CoreNLP package.

• Sentence token embedding sei,j = [GloV e(wi,j); f1i,j ; f2i,j ; f3i,j ; f4i,j ]

• Question token embedding qei = [GloV e(qi); f1i ; f2i ; f3i ; f4i ]

• Answer token embedding aei = [GloV e(ai); f1i ; f2i ; f3i ; f4i ]

Here, sei,j indicate jth token embedding of ith sentence of the article. qei

indicate ith token embedding of question and aei indicate ith token embedding
of answer.

2. The BERT feature extraction method is used to obtain representation for each
token. The output from the BERT model is a representation of word pieces,
which are further aggregated (average pooling) to produce the final token rep-
resentation.
sei,j = BERT (wi,j), qei = BERT (qi) and aei = BERT (ai)
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Article Word Encoder and Sentence Encoder

The initial token embeddings sei,1, sei,2, . . . , sei,k of article sentence si are fed through
a Bidirectional Long Sort Term Memory (BiLSTM) network referred as LSTMw to
generate contextual representations of the tokens.

−−→
henc
i,j =

−−−−−→
LSTMw(

−−−→
henc
i,j−1, sei,j) (3.2)

←−−
henc
i,j =

←−−−−−
LSTMw(

←−−−
henc
i,j+1, sei,j) (3.3)

−−→
henc
i,j and ←−−

henc
i,j are forward and backward hidden representations of LSTMw. The

final hidden state is henc
i,j = [

−−→
henc
i,j ;

←−−
henc
i,j ]. We denote hp as the sequence of hidden states

(henc
i,j ) of all tokens of the article.
In order to represent each sentence si in the article, we employed another bidi-

rectional LSTM layer (LSTM s) on top of the word encoding layer. The inputs for
LSTM s are the last token (k) hidden representation of sentence si from LSTMw

i.e., henc
i,k = [

−−→
henc
i,k ;

←−−
henc
i,k ] and the first token hidden representation of sentence si from

LSTMw i.e., henc
i,1 = [

−−→
henc
i,1 ;

←−−
henc
i,1 ]. The final encoded contextual representation of ith a

sentence is denoted as yi. Now, the article can be represented as y =< y1, y2, . . . yp >.
This completes the hierarchical structure of the encoder.

Question Encoder and Answer Encoder

To determine contextual representations of the question-and-answer tokens, the initial
token embeddings are fed through a bidirectional LSTM. This LSTM network is
shared with article word-level LSTM.

hq
i = [

−−−−−→
LSTMw(

−−→
hq
i−1, qei);

←−−−−−
LSTMw(

←−−
hq
i+1, qei)] (3.4)

ha
i = [

−−−−−→
LSTMw(

−−→
ha
i−1, aei);

←−−−−−
LSTMw(

←−−
ha
i+1, aei)] (3.5)

The question and answer contextual representations are hq =< hq
1, h

q
2, . . . h

q
n > and

ha =< ha
1, h

a
2, . . . h

a
l > respectively.

SoftSel Operation

We investigate the effect of exploiting rich interactions among the word-level repre-
sentations among the components of the triplet. It turns out that these interactions
are helpful in finding potential candidate sentences of the article for DG. Such in-
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Figure 3.3: Flow diagram of softsel operation

teractions can be achieved using SoftSel operation [TCZ19], which encodes the most
relevant aspects of a sequence to another sequence. The input to SoftSel operation
are two sequences, and the output is an encoded sequence. A pictorial flo of softsel
operation is depicted in Fig. 3.3. The operation has three steps:

1. Cartesian Similarity: For given two input sequences h1 ∈ Rr×l1 and h2 ∈
Rr×l2 , a cartesian similarity L ∈ Rl1×l2 is obtained across all possible states or
words in h1 and h2.

L = hT
1W

Lh2 (3.6)

2. Row-wise Softmax: To obtain distribution L̄ ∈ Rl1×l2 over cartesian similar-
ity scores softmax is applied on each row of L separately.

L̄ = row-wise softmax(L) (3.7)

3. Weighted Sum : Finally, a weighted sum of the second sequence h2 is encoded
at the given state j of the first sequence h1 and denoted as h̄1j ∈ Rr×1. h̄1j may
be considered as the representation of jth state of the first sequence determined
from the most influential parts of the second sequence for that state.

h̄1 = h2L̄
T (3.8)

WL ∈ Rr×r is a weight matrix learned during the training process.

Evidence Encoder

We leverage softsel operation to encode relatedness/similarity among the components
of triplet and term it as evidence.
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• Question-Evidence Encoder: First, we extract evidence between the ques-
tion and the passage. More specifically, each state of the question sequence is
represented as the weighted sum of state representations of the article sequence
hp. The final encoded question sequence h̄q can be viewed as a synthesized
evidence vector known as the question-evidence encoder.

h̄q = SoftSel(hq, hp) (3.9)

• Answer-Evidence Encoder: Similar to the question-evidence encoder, an-
other softsel operation is performed to obtain the answer-evidence encoder h̄a.

h̄a = SoftSel(ha, hp) (3.10)

• Question-Answer-Evidence Encoder: It is a two-step process. We first
apply softsel operation between question sequence hq and answer sequence ha

to encode the most relevant aspects of the answer in h̄′
q. Than, another soft-

sel operation is applied between h̄′
q and article hidden sequence hp to obtain

question-answer-evidence representation h̄qa.

h̄′
q = SoftSel(hq, ha) (3.11)

h̄qa = SoftSel(h̄′
q, hp) (3.12)

• Answer-Question-Evidence Encoder: Similar to the question-answer-evidence
encoder, another set of softsel operations are performed to obtain question-
answer-evidence representation h̄aq.

h̄′
a = SoftSel(ha, hq) (3.13)

h̄aq = SoftSel(h̄′
a, hp) (3.14)

Note that the softsel operation is not symmetric. So the representations h̄qa and
h̄aq are different. Computation of h̄q detects question-relevant sentences from the
article. Whereas the other three evidence encoders are majorly oriented towards the
answer and detect answer-relevant sentences in the article. This information is used
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in subsequent stages to ensure that the candidate sentences for distractor generation
are not semantically equivalent to the answer.

Gated Contextual and Evidence Encoding Layer

Inspired by the work on a sequential variant of highway network [TCZ19], we adopted
a gated mechanism (Gtd_Mchsm) to control and encode information flow between
contextual representation (i.e., from LSTM network) and evidence representation
(i.e., from softsel operation). Let’s define the gated mechanism, which will result
in a contextual-evidence representation K̄ ∈ Rrxm given contextual representation
C ∈ Rrxm and evidence representation E ∈ Rrxm as given below:

z = σ(WCC +WEE + b) (3.15)

K̄ = C ∗ z + E ∗ (1− z) (3.16)

The functionality of z is similar to that of the reset gate of RNNs. It determines
what fraction of past knowledge (C) to forget and what fraction to retain. WC ,WE ∈
Rrxr, b ∈ Rr are parameters.

Average pooling: We applied average-pooling operation to transform contex-
tual representations (article sentence (si), question (q) and answer (a)) and evidence
representations (h̄q, h̄a, h̄qa and h̄aq) to obtain fixed length vector representations.

si =
1

k

k∑

t=1

henc
i,t , q =

1

n

n∑

t=1

hq
t , a =

1

l

l∑

t=1

ha
t (3.17)

�hq =
1

n

n∑

t=1

h̄qt , �ha =
1

l

l∑

t=1

h̄at , �hqa =
1

n

n∑

t=1

h̄qat , �haq =
1

l

l∑

t=1

h̄aqt , (3.18)

Notice that for article sentence representation, we do not use the contextual sen-
tence representation yi from the hierarchical model because the idea is to exploit
information of word-level representation henc

i,j of sentences. The word-level represen-
tation contains more fine-grained information. The decoder of the model utilizes
sentence-level representation. Finally, the gated mechanism is applied to different
pairs of fixed vector representations:
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qF = Gtd_Mchsm(q, �hq) (3.19)

aF = Gtd_Mchsm(a, �ha) (3.20)

qaF = Gtd_Mchsm(a, �hqa) (3.21)

aqF = Gtd_Mchsm(a, �haq) (3.22)

Sentence Decoupling:

Inspired by how humans extract distractors (see section 3.1), we derive a function to
score the sentences according to their fitness for generating distractors.

mi = λqs
T
i WzqF − λa(s

T
i WzaF + sTi WzqaF + sTi WzaqF ) + bz (3.23)

Here, λq and λa are hyperparameters. Wz ∈ Rrxr and bz ∈ Rr are learnable
parameters. Similar to the approach of [GBL+19], we applied temperature τ to find
the final softsel matching score η. Intuitively, softsel matching scores should decouple
passage sentences that have the correct answer and potential candidate sentences (in
context with the question) for distractor generation. Moreover, if a question can be
answered using a few sentences, then the distribution of scores for those sentences
should be high. In other cases, if the question requires reasoning or a summary of
the article, then distribution should be inclined toward uniformity.

τ = σ(W T
q hq + bq) (3.24)

ηi = mi/τ (3.25)

where σ is the sigmoid activation function, hq is contextual representation from
word-level LSTM, Wq and bq are parameters.

3.4.3 Hierarchical Multi-Decoder

We now discuss the different stages of our decoder network. Unlike previous works
where a single decoder and Jaccard similarity over beam samples were used to gen-
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erate three different distractors, we propose a novel multi-decoder model to generate
distractors. We used three separate decoders (i.e., uni-directional LSTM networks)
to generate three different distractors. Ideally, multiple decoders should not focus
on the same word of a sentence to generate distractors, and at the same time, they
should not consider non-relevant sentences of the article. We achieve this goal in two
ways: (a) During training, we learn the parameters of the second and third decoder
in such a way that the generated distributions over candidate words should not be
exactly similar to the distributions generated by the earlier decoders and neither be
very different and (b) as the ground truth for each decoder output is the same, we
proposed a dis-similarity based loss function (we will provide more detail in section
3.4.4) to learn appropriate distributions.

Question Context Initialization

To ensure that the decoders start with the context of the question, we use a separate
uni-directional LSTM layer (LSTM init) to encode the question and use the last hidden
state of LSTM (as also done in [GBL+19]) in two ways. (a) For each decoder, we use
the last token of question qlast and (b) employed final cell state cinitn and hidden state
hinit
n of LSTM to initialize each decoder.
We further examined whether using more than one last token of the question

improves the question context or not. In our limited experiments, we found that in
this setting, the generated distractors were biased towards the question. So, there
should be a trade-off between the question context and the quality of the generated
distractor. Experimental results gave evidence that using the last token of questions
works well.

Multi-Decoder Model

For a given decoder, at every decoding time step t we obtain two attention scores, i.e.,
sentence-attention score βdk

i and word-attention score αdk
i,j for article sentences and

article words respectively. The superscript k indicates kth decoder. These attention
scores are further combined with softsel matching score ηi to obtain final attention
distribution ᾱdk

i,j as we describe in Equation 3.23. Combining a softsel matching score
is necessary because we need to de-emphasize the sentences and words that are not
in the question context or are answer-revealing. The idea of sentence and word-level
attention is well studied as a hierarchical attention model for text summarization tasks
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and is proven to be efficient [SBV+15a]. We utilized article sentence representation
yi to compute the sentence-attention score.

hd1
t , hd2

t and hd3
t are states from three decoder LSTMs at any given time-step t.

As discussed previously, the learned distribution of different decoders should not be
too similar or too different; we achieve this goal in the following way. The sentence
and word level attentions for the first decoder are computed as:

βd1
i = yTi Wd1h

d1
t (3.26)

αd1
i,j = henc

i,j
TWd′1h

d1
t (3.27)

The attention scores for the second decoder are given by:

βd2
i = yTi Wd2h

d2
t − λdist1 ∗ yTi Wd1h

d1
t , (3.28)

αd2
i,j = henc

i,j
TWd′2h

d2
t − λdist1 ∗ henc

i,j
TWd′1h

d1
t (3.29)

The second terms in Equations 3.28 and 3.28 try to move the distributions away
from the distributions learned by the first decoder. Similarly, the set of equations for
the third decoder is given by:

βd3
i = yTi Wd3h

d3
t − λdist1 ∗ yTi Wd1h

d1
t − λdist2 ∗ yTi Wd2h

d2
t , (3.30)

αd3
i,j = henc

i,j
TWd′3h

d3
t − λdist1 ∗ henc

i,j
TWd′1h

d1
t − λdist2 ∗ henc

i,j
TWd′2h

d2
t (3.31)

Where Wd1 , Wd′1 , Wd2 , Wd′2 , Wd3 and Wd′3 are learnable parameters. λdist1 and
λdist2 are hyper-parameters. Finally, we combine the βdk

i and αdk
i,j and softsel match-

ing score ηi. We further normalize the score to obtain final word-level attention
distribution ᾱdk

i,j across the article.

ᾱdk
i,j =

αdk
i,jβ

dk
i ηi∑

i,j α
dk
i,jβ

dk
i ηi

(3.32)
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Then, the context vector ckt is derived using attention-weighted additive operation
over the word-level context representations of article words.

ckt =
∑

i,j

ᾱdk
i,jh

enc
i,j (3.33)

The distribution over given vocabulary words V at a time step t and for kth

decoder is computed as:

Pvkt = softmax(Wvtanh(Wh̄[h
dk
t ; ckt ]) + bv) (3.34)

Where Wv, Wh̄ and bv are learnable parameters.

3.4.4 Training and Dis-Similarity Loss

As the ground truth distractor for each decoder is the same, we need to be cautious
that all decoders do not try to generate the same/similar (ground truth) distractor.
In an attempt to achieve this, the parameters of the model are already computed in
such a way that the parameters (α, β values) of any decoder Dk are dependent on
previous decoders D1···k−1. Towards this, additionally, we give an incentive to the
model to learn slightly different distributions from the ground truth distractor during
the learning process. We add a dis-similarity loss in the loss function to achieve this.
The dis-similarity loss measures the distance between the ground truth distractor and
the generated distractor. Hence, the loss function has two components: (a) cross-
entropy loss and (b) dis-similarity loss, which are contrasting in nature. The impact
of the dis-similarity loss is tuned using a parameter λds. The effect of the addition of
the dis-similarity is analyzed with detailed evaluations in the Results Section.

Dis-similarity loss is obtained in the following way:

1. First, we feed the ground truth distractor through a uni-directional LSTM
network where the last hidden step h

dg
end encodes the contextual representation

of the ground truth distractor.

2. We also collect the last hidden state representation from each decoder, i.e., hd1
end,

hd2
end and hd3

end.

3. Finally, a cosine similarity score is computed across ground truth representation
and the final state of each decoder.

dsi = cos(h
dg
end, h

di
end) (3.35)
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where dsi indicate similarity score with ith decoder.

The final loss function to be minimized is given by:

L =
3∑

k=1

(
−

∑

Dk∈V
logP (Dk|S,Q,A; θk)− λds ∗ (1− dsk)

)
(3.36)

3.5 Experimental Setting

3.5.1 Dataset

We used two distractor generation datasets to evaluate the performance of the pro-
posed models: (1) RACE DG and (2) RACE++ DG. RACE [LXL+17] is a read-
ing comprehension dataset collected from English examinations of the middle school
(called RACE-M) and high school (called RACE-H) Chinese students. It consists
of 97,687 questions from 27,933 articles. RACE++ is an extension of the RACE
dataset. RACE++ additionally includes 14,122 questions from 4,275 articles collected
from college-level English examinations (called RACE-C). In the RACE dataset, each
record is a 6-tuple containing the article, question, correct answer, and three distrac-
tors. It was observed that many distractors do not have any semantic relevance with
the article [GBL+19]. Gao et al. [GBL+19] used linguistic features and handcrafted
rules to eliminate poor-quality distractors. Designing an exhaustive set of rules is
not a trivial task, and created rules may be biased in nature. Hence, we investigate
at the semantic level filter good-quality distractors. To find semantically relevant
distractors, we applied the following methodology:

1. We manually removed those distractors that are dependent on other distractors.
For example, distractors like “all of the above,” “both option a and option b
are correct,” and so on.

2. Distractor, question, and answer should have a minimum word/token length of
three.

3. We removed questions that have fill-in-the-blanks at the beginning or in the
middle of the question. Questions with fill-in-the-blanks in the last are retained.

4. For an <article, question, correct answer, distractor> tuple, we found BERT
representations for each of these components and also of that of the individual
article sentences. We then computed the cosine similarity of the distractor with
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Parameters RACE DG RACE++ DG

Total no. of train samples 96501 135321
Total no. of dev samples 12089 16915
Total no. of test samples 12284 16915

Avg. article length (tokens) 342.0 342.3
Avg. question length 9.76 10.9
Avg. answer length 8.63 8.00
Avg. distractor length 8.48 7.68
Avg. sentences length (in the article) 19.9 19.6
Avg. no. of distractors per triplet 2.1 2.3

Table 3.1: Statistics of RACE and RACE++ DG dataset. Average statistics are computed
across all three splits.

the question, correct answer, and each sentence of the article. The distractor is
retained only if its cosine similarity with the question, correct answer, and the
average cosine similarity over the article sentences - all of them were above a
certain threshold (approximately 90% similarity).

After pre-processing, the modified RACE data is called RACE-DG, and RACE++
is called RACE++-DG. We randomly divide RACE++ DG data into the train (80%),
test (10%), and validation (10%) splits. For RACE DG data, these splits were publicly
available; we have used those. Statistics of the datasets are presented in Table 3.1.

3.5.2 Baselines

We compared the proposed model performance with the following baselines:

• Seq2Seq [LPM15]: It is standard encoder-decoder model with global attention
mechanism. It consists of LSTM in both the encoder and the decoder side.

• HieRarchical Encoder-Decoder (HRED) [SBV+15a]: This is an advance-
ment over the basic seq2seq model with global attention to handle large in-
put. By construction, it is hierarchical to encode the input at word-level and
sentence-level.

• Hierarchical Static Attention (HSA) [GBL+19]: This is similar to HRED
but uses static and dynamic attention instead of single global attention.

• Hierarchical Co-Attention (HCA) [ZLW20]: It is an improvement over
the HSA model by exploiting rich interaction between article and question by
co-attention model.
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• Static Attention + Multi-Decoder (SMD) : This is a variant of the pro-
posed HMD-Net model. It employs static attention (as used in HSA [GBL+19])
instead of a softsel and gated mechanism on the encoder side. We define this
model to check the effectiveness of the multi-decoder model in the previous
literature model.

• Encoder of HMD-Net + Decoder of HSA (EHMD+DHSA): We pro-
pose this variant to verify the effectiveness of the encoder of HMD-Net. The
encoder of the model is that of the HMD-Net (utilizing softsel and gated con-
textual ideas), and the decoder is similar to the HSA model (single decoder
that generates three distractors using a beam search algorithm).

Additionally, HMD-Net+LF, EHMD+DHSA+BERT, and HMD-Net+BERT base-
line models are also developed with linguistic features (LF) and BERT for comparison.

3.5.3 Evaluation Metrics

We evaluated the performance of all the models on seven automated and three manual
evaluation metrics. Unlike previous approaches, which use only word-overlap-based
automated evaluated metrics like BLEU(1-4) [PRWZ02a] and ROUGE-L [Lin04a],
we additionally consider lexical similarity and embedding-based metrics. These word-
overlap-based metrics may not reflect actual model performance. Several drawbacks
of the BLEU scores have been discussed in the literature [CBOK06]. We aim to re-
port the scores based on metrics that reflect the actual performance of the system
and correlate with human judgments. To accomplish this, we additionally use lexical
similarity-based metric METEOR [LD09], embedding-based metrics [LLS+16], and
BERT cosine similarity (BERT CS) metric. Unlike BLEU, METEOR leverages lin-
guistic resources like Word-Net and the root form of the word to compute the score.
The three embedding-based metrics are Greedy Matching [RL12], Embedding Aver-
age [WBGL16], and Vector Extrema [FPLT14]. Finally, we computed the BERT-CS
score, influenced by the recent work on the BERT model [DCLT18]. We obtained the
sentence representation from BERT for both generated and reference distractors and
applied cosine similarity to compute the BERT-CS score.

For manual evaluation, we used Grammatical correctness and Distractability. Ad-
ditionally, we performed another human assessment to identify which method is gen-
erating a more confusing distractor. The more confusing the distractors are, the better
the model is.
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3.5.4 Implementation Details

We modified the implementation of the OpenNMT toolkit [KKD+17] for the model
development. The vocabulary of the model is 50,000 most frequent words from the
training corpus. For the BERT-based model, we extracted the word feature from
bert-base-uncased of dimension 768. For other models GloVe.840B.300d pre-
trained word embedding [PSM14] is used. The Out-of-Vocabulary tokens are la-
beled as special symbol UNK. The number of layers for all the word encoders (either
BiLSTM or uni-directional LSTM), including question-context initializer and target
sentence encoder, is 1 and 2 for sentences. All three decoders have the number of
LSTM layers as 2. We set 700 hidden sizes for both BiLSTMs (350 for each direc-
tion) and uni-directional LSTMs. After several experiments on the validation set,
the hyper-parameters λq, λa, λdist1, λdist2 and λds are set as 0.5, -0.3, 0.5, 0.4 and
0.0001 respectively. 0.3 is dropout probability, and the gradient norm upper bound
is set to 5. Except for word embedding, all the trainable parameters are initialized
with U(-0.1, 0.1). The stochastic gradient descent (SGD) optimizer is initialized with
a learning rate of 0.1 for all the models. Mini batch size is set to 16. We run the
model for 200k steps. After 150k steps, the learning rate is halved at every 10k steps
till the end. Additionally, we employed teacher-forcing. The maximum length of the
generated distractor is set to 15. The beam size is set to 10. All the hyper-parameters
are searched over the validation split, and results are reported on the test split.

3.6 Results And Analysis

3.6.1 Automatic Evaluation Results

The automatic evaluation results of our proposed models are reported in Table-3.2 and
Table-3.3 on RACE-DG and RACE++DG datasets, respectively. The comparison
with literature methods is presented for only RACE-DG datasets. Due to computa-
tional constraints and high overlap between these two datasets, the best-performing
baselines with RACE-DG data are considered baselines with RACE++DG datasets.
It can be observed that HMD-Net outperformed all baseline models across three
distractors. Linguistic features (LF) and BERT contextual embedding inclusion fur-
ther improve model performance. HMD-Net+BERT emerged as our best-performing
model, whereas the EHMD+DHSA+BERT model was the second-best model. We
can observe that there is a significant performance gap between HMD-Net+LF and
HMD-Net+BERT, which reveals the importance of contextual embedding. The bet-
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Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR Embd Avg G. Match Ext.Score BERT-CS

1st

Seq2Seq [LPM15] 25.28 12.43 7.12 4.52 13.58 - - - - -
HRED* [SBV+15a] 27.96 14.41 9.05 6.35 14.68 - - - - -
HSA* [GBL+19] 28.18 14.57 9.19 6.43 14.89 - - - - -
HCA [ZLW20] 28.65 15.15 9.77 7.01 15.39 - - - - -
EHMD+DHSA 28.25 14.52 9.34 6.66 24.03 10.76 0.569 ± 0.00006 2.530 ± 0.0004 0.357 ± 0.00005 0.813
SMD 28.78 15.60 10.12 7.26 25.59 11.22 0.574 ± 0.0006 2.585 ± 0.0004 0.362 ± 0.00005 0.817
HMD-Net 29.26 16.16 10.16 7.66 25.78 11.58 0.582 ± 0.00006 2.619 ± 0.0004 0.367 ± 0.00005 0.818
HMD-Net+ LF 29.80 16.31 10.64 7.57 26.31 11.56 0.581 ± 0.00006 2.629 ± 0.0004 0.367 ± 0.00005 0.823
EHMD+DHSA+BERT 29.44 16.02 10.06 6.6 25.04 11.08 0.586 ± 0.00005 2.610 ± 0.0004 0.364 ± 0.00005 0.823
HMD-Net+ BERT 30.99 17.30 11.09 7.52 26.50 12.07 0.591 ± 0.00005 2.667 ± 0.0004 0.370 ± 0.00005 0.823

2nd

Seq2Seq [LPM15] 25.13 12.02 6.56 3.93 13.20 - - - - -
HRED* [SBV+15a] 27.85 13.39 7.89 5.22 14.48 - - - - -
HSA* [GBL+19] 27.85 13.41 7.87 5.17 14.41 - - - - -
HCA [ZLW20] 27.29 13.57 8.19 5.51 14.85 - - - - -
EHMD+DHSA 27.41 13.47 7.96 5.27 22.75 10.41 0.563 ± 0.00006 2.455 ± 0.0004 0.352 ± 0.00005 0.812
SMD 28.17 14.62 8.96 6.00 24.15 10.82 0.570 ± 0.00006 2.519 ± 0.0004 0.355± 0.00005 0.814
HMD-Net 28.84 15.06 9.29 6.37 24.79 11.15 0.580± 0.00006 2.591 ± 0.0004 0.364± 0.00005 0.818
HMD-Net + LF 29.19 15.33 9.34 6.23 24.90 11.27 0.583 ± 0.00006 2.595 ± 0.0004 0.366 ± 0.00005 0.820
EHMD+DHSA+BERT 30.16 15.9 9.68 6.19 24.05 11.29 0.583 ± 0.00005 2.535 ± 0.0003 0.359 ± 0.00004 0.823
HMD-Net + BERT 30.93 16.89 10.64 7.10 25.76 11.96 0.595 ± 0.00005 2.646 ± 0.0004 0.368 ± 0.00005 0.826

3rd

Seq2Seq [LPM15] 25.34 11.53 5.94 3.33 13.23 - - - - -
HRED* [SBV+15a] 26.73 12.55 7.21 4.58 14.86 - - - -
HSA* [GBL+19] 26.93 12.62 7.25 4.59 14.72 - - - - -
HCA [ZLW20] 26.64 12.67 7.42 4.88 15.08 - - - - -
EHMD+DHSA 26.93 12.97 7.32 4.56 22.31 10.29 0.560 ± 0.00005 2.416 ± 0.0003 0.352 ± 0.00005 0.811
SMD 27.50 13.69 7.90 5.01 23.38 10.39 0.562 ± 0.00006 2.463 ± 0.0004 0.350 ± 0.00005 0.813
HMD-Net 27.64 13.98 8.22 5.33 23.42 10.53 0.572 ± 0.00006 2.526 ± 0.0004 0.356 ± 0.00005 0.815
HMD-Net + LF 29.09 14.64 8.63 5.60 24.63 10.99 0.580 ± 0.00005 2.540 ± 0.0004 0.360 ± 0.00005 0.819
EHMD+DHSA+BERT 29.62 15.47 9.52 6.18 23.93 11.27 0.585 ± 0.00005 2.513 ± 0.0003 0.359 ± 0.00004 0.823
HMD-Net + BERT 29.70 15.95 9.74 6.21 24.91 11.37 0.584 ± 0.00005 2.614 ± 0.0004 0.363 ± 0.00005 0.824

Table 3.2: Automatic evaluation results on the RACE-DG dataset. For Seq2Seq and HCA,
the results are taken from [GBL+19]. For HRED and HSA (rows with *), the results are
taken from [ZLW20] as these numbers are better than the numbers reported in the original
paper [GBL+19] for the same dataset. Symbol (-) indicates that results are not available.

Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR Embd Avg G. Match Ext.Score BERT-CS

1st

EHMD+DHSA 32.68 18.62 12.41 8.96 31.23 12.3 0.5713 ± 0.00005 2.4006 ± 0.0003 0.3649 ± 0.00004 0.8395
SMD 33.18 18.45 11.43 7.36 32.48 12.53 0.5854 ± 0.00005 2.62 ± 0.0003 0.3770 ± 0.00004 0.8424
HMD-Net 33.37 18.61 11.64 7.66 32.29 12.49 0.5877 ± 0.00005 2.6689 ± 0.0003 0.3766 ± 0.00004 0.8419
HMD-Net+ LF 33.45 18.81 11.87 7.93 32.18 12.54 0.5826 ± 0.00005 2.6641 ± 0.0003 0.3762 ± 0.00004 0.8429
EHMD+DHSA+BERT 33.57 19.38 12.79 8.96 31.81 12.44 0.5848 ± 0.00004 2.6624 ± 0.0003 0.3710 ± 0.00004 0.8444
HMD-Net+ BERT 34.58 20.26 13.54 9.66 32.24 12.85 0.5939 ± 0.00005 2.6904 ± 0.0003 0.3782 ± 0.00004 0.8452

2nd

EHMD+DHSA 31.46 16.5 10.1 6.65 28.69 11.58 0.5656 ± 0.00005 2.3023 ± 0.0003 0.3540 ± 0.00004 0.8371
SMD 32.42 17.29 10.36 6.54 30.41 12.09 0.5774 ± 0.00005 2.5257 ± 0.0003 0.3684 ± 0.00004 0.8422
HMD-Net 33.99 17.62 10.42 6.45 30.49 12.23 0.5839+/- 0.00005 2.5756 ± 0.0003 0.3709 ± 0.00004 0.8423
HMD-Net + LF 33.26 18.03 10.79 6.81 31.01 12.37 0.5846 ± 0.00005 2.6099 ± 0.0003 0.3763 ± 0.00004 0.8426
EHMD+DHSA+BERT 33.47 18.83 12.28 8.5 29.51 12.21 0.5838 ± 0.00004 2.6248 ± 0.0002 0.3642 ± 0.00004 0.8425
HMD-Net + BERT 34.01 19.53 12.83 9.02 30.86 12.51 0.5953 ± 0.00004 2.6554 ± 0.0003 0.3763 ± 0.00004 0.8430

3rd

EHMD+DHSA 31.27 15.85 9.38 6.05 27.67 11.49 0.5698 ± 0.00005 2.2752 ± 0.0002 0.3533 ± 0.00004 0.8362
SMD 31.73 16.39 9.42 5.72 29.85 11.73 0.5794 ± 0.00005 2.483 ± 0.0003 0.3682 ± 0.00004 0.8376
HMD-Net 32.14 16.67 9.55 5.69 29.75 11.95 0.5864 ± 0.00004 2.5196 ± 0.0003 0.3683 ± 0.00004 0.8369
HMD-Net + LF 31.89 16.89 9.85 6.07 29.75 11.95 0.5736 ± 0.00005 2.5819 ± 0.0003 0.3653 ± 0.00004 0.8380
EHMD+DHSA+BERT 33.26 18.59 12.05 8.32 29.12 12.14 0.5817 ± 0.00004 2.5675 ± 0.0002 0.3635 ± 0.00004 0.8401
HMD-Net + BERT 33.29 18.84 12.28 8.52 29.87 12.17 0.5881 ± 0.00005 2.6214 ± 0.0002 0.3690 ± 0.00004 0.8400

Table 3.3: Automatic evaluation results of different models on RACE++ DG dataset.
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Models Annot-set1 Annot-set2 Annot-set3
SMD 24 27 25
HMD-Net 25 26 27
HMD-Net + LF 34 30 33
HMD-Net + BERT 37 37 35

Table 3.4: Comparative study results of human evaluation.

ter score of SMD over the HCA model across all three distractors acknowledges that
the generation of distractors is suitable and effective in the multi-decoder setting.
A higher score of EHMD+DHSA over the HSA model across all three distractors
validates the impact of the stronger encoder. All three distractors have similar obser-
vations, and the results for the second and third distractors also improved significantly
as compared to previous approaches.

The results across METEOR, embedding-based metrics, and BERT-CS are con-
sistent and similar to lexical overlap-based metrics. These metrics give additional ev-
idence that HMD-Net+BERT consistently outperforms all other models. The HMD-
Net model scores for embedding metrics are close to baseline models. Considering
this, we further investigate and obtain statistically significant bounds for each met-
ric, which validate the correctness/reliability of the reported scores. Additionally, the
very high BERT-CS scores (>0.81) confirm that generated distractors are semanti-
cally very close to reference distractors. The evaluation scores for all the models on
the RACE++DG dataset are higher as compared to the RACE-DG dataset. This
improvement in performance can be attributed to (a) the size of RACE++DG is
bigger, and (b) it contains quality distractors that help the models to learn better.

3.6.2 Human Evaluation Results

With human evaluation, we try to find answers to the following questions: (a)Which
of the models is performing the best?, (b) What is the quality of the generated text?
and (c) Do these evaluation scores correlate with automated evaluation? To answer
these queries, we have performed two types of human assessments: comparative study
and quantitative study.

1. Comparative Study: For this study, we employed 30 annotators (holding at
least a master’s degree in computer science and fluent in the English language).
The annotators were distributed in three annotator sets, each of size 10. From
the RACE-DG evaluation dataset, we randomly selected 120 questions from
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40 articles (three questions from each article). To reduce bias and subjective
evaluation, we gave 120 questions to each annotator set. Every annotator had
to annotate 12 questions from 4 passages. To each annotator, along with the
passage and question, we provided four different distractors (as options) from
our four models: SMD, HMD-Net, HMD-Net+LF, and HMD-Net+BERT. We
asked annotators to select the closest correct answer. It was mentioned to the
annotators that some questions might not have the correct answer; in that case,
they had to select the closest option. We hypothesize that the distractors that
are close to the correct answer (selected by annotators) are more confusing. The
more confusing the distractors are, the better the model is. We intentionally
did not expose the correct answers to evaluators, so the evaluation should not
be biased. Table 3.4 includes the results of this study. Each entry in the table
indicates the number of times the distractor generated by the model (in row)
is selected as the correct answer by the annotator set (in column). Comparing
across all three annotator sets, it can be concluded that the HMD-Net+BERT
model generated more confusing distractors. The second best model is HMD-
Net+LF. The performance ordering of the models is similar to the one obtained
in automatic evaluation results.

2. Quantitative Study: To have a quantitative idea of the quality of gener-
ated distractors, we asked each annotator to rate the generated distractors on a
scale of 1-to-5 (1 is very poor and five is very good) on two manual evaluation
metrics: (a) Grammatical correctness- how grammatically correct are the
distractors? and (b) Distractability- how confusing are the distractors? As
the Quantitative Study will provide absolute evaluation scores, we conducted
this on a large dataset and six models. We randomly selected 350 questions
from 117 passages. We employed two sets of annotators (holding at least a
master’s degree in computer science and fluent in the English language), each
having seven annotators. Each set of annotators had to evaluate all 350 ques-
tions. Each annotator had to annotate 50 questions. Due to more data and
more number of models in this task as compared to the comparative study, the
workload on the annotators was more for this task. In this study, we randomly
selected one distractor from EHMD+DHSA, SMD, HMD-Net, HMD-Net+LF,
EHMD+DHSA+BERT, and HMD-Net+BERT models. The outcomes of the
study can be found in Table-3.5. The grammatical correctness metric received a
high score over distractibility, and HMD-Net+BERT was the best-performing
model. The grammatical correctness scores correlate with automated scores.
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Models Annot-set1 Annot-set2

Grammatical Correctness

EHMD+DHSA 4.007 3.298
SMD 4.058 3.894
HMD-Net 3.780 3.747
HMD-Net+LF 4.061 3.988
EHMD+DHSA+BERT 4.054 4.071
HMD-Net+BERT 4.155 3.982

Distractability

EHMD+DHSA 2.431 2.557
SMD 2.567 2.457
HMD-Net 2.522 2.491
HMD-Net+LF 2.680 2.560
EHMD+DHSA+BERT 2.661 2.752
HMD-Net+BERT 2.752 2.634

Table 3.5: Quantitative study results of human evaluations

Considering the fact that the current performance ceiling of humans on the
RACE dataset is 95% [LXL+17] (for identification of correct answer given arti-
cle, question, and four options), confusing humans is a challenging task. Con-
sidering these factors, we can conclude that our model performed decently on
the distractability aspect.

3.6.3 Ablation Study and Inter-distractor Similarity Test

To verify the effect of each component of the proposed HMD-Net, we performed an
ablation study. The results on the first distractor can be seen in Table-3.6. It is
observed that the evidence encoding layer, dis-similarity loss, and gated contextual
representation are key components of the model. The removal of these components
resulted in lower performance. Using the last two tokens of the question sentence -
diverts the model training and the model performed worst under this setting. The
possible explanation can be - including a larger context may disturb distractor sen-
tence structure and the model gets confused in learning critical patterns. The removal
of contextual evidence representation (gated mechanism output), haq and hqa have a
minor impact on the model. Overall, the proposed configuration performs best.

It is expected that generated distractors should be semantically related to each
other. If all the generated distractors are similar on a lexical level, then all the metrics
used above will report a high score for all the distractors, but effectively, only one
distractor is generated. This error is hard to catch until some careful analysis is
performed. To nullify this kind of situation and provide evidence that our generated
distractors are different at the lexical level, we performed an additional experiment
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Models BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR
Full HMD-Net Model 29.26 16.16 10.16 7.66 25.78 11.58
Without EEL (with CR) 28.60 15.17 9.68 6.90 25.15 10.96
Without CR (with EEL) 29.15 15.71 10.20 7.27 25.62 11.40
*Without CER 28.86 15.46 9.96 7.15 25.38 11.11
Without h_aq & h_qa 28.92 15.89 10.39 7.50 25.56 11.44
Without DSL 28.35 15.24 9.91 7.05 25.39 10.96
With last two Question tokens in QCI 20.90 9.38 5.45 3.50 17.45 8.24

Table 3.6: Ablation study results of the first distractor on the RACE DG dataset. Where
EEL is the evidence Encoding Layer, CR is contextual representation, CER is contextual
evidence representation (gated mechanism output), DSL dis-similarity loss, and QCI ques-
tion Context Initialization. The row with * indicates that -the results are obtained without
CER where the SS matching score is obtained from the average of CR and EEL scores

Models Dist1 & Dist2 Dist1 & Dist3 Dist2 & Dist3
SMD 0.200 0.191 0.216
HMD-Net 0.221 0.210 0.236
HMD-Net + LF 0.215 0.219 0.201
HMD-Net + BERT 0.264 0.251 0.246

Table 3.7: Average Jaccard Similarity scores across generated three distractors on RACE-
DG dataset.

on the RACE-DG dataset. For each pair of generated distractors, we computed
the Jaccard Similarity (JS). The results are reported in Table-3.7. Note that the
maximum similarity was 0.264 on the BERT model, which is very low. Previously,
[GBL+19] and [ZLW20] used the JS threshold as 0.5 while selecting three distractors
from the pool of distractors generated by the beam search algorithm. This gives
evidence that our model generates lexically distinct distractors.

3.6.4 Case Study

Fig. 3.4 presents a sample distractor generated from the HMD-Net model. In the
middle, we plotted the distribution of the softsel matching score (SSMS). We can
observe that sentences 7, 9, and 10 are potential candidates for distractor generation
and received high scores. Sentence 8 contains the correct answer and hence received
a very low score. The three ground truth and generated distractors are shown on
the top right side of the figure. In the bottom right, final learned attention (ᾱdk

i,j) is
included for all three decoders at decoding time step t2, i.e., after generating word
’Because’. For generating the next word, Decoder 1 selected Sentence 9, Decoder 2
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1.  The first time I went abroad was when I went to London.

The Distribution of
SS Matching Score

Question: Why did the writer go to Camden market alone?
Answer: Because his friends stayed in bed late.

True Distractors:
1). Because he wanted to buy a silver ring for his sister.
2). Because his friends went back home first. 
3). Because his friends didn't want to buy things there.

Generated Distractors
1). Because he wanted to buy a silver ring for his sister.  
2). Because he wanted to see all the famous sites.
3). Because he wanted to find a game.

  You    can   buy ....  there    and    I     bought    a     silver     ring    for   my    sister

  First  we   went    to    see     all     the     famous   sites   Big Ben ...  Oxford  street 

  It    was    really ...  we    went   to    Hyde    Park     for    a    game    of     football D
e

c
o

d
e

r-
3

Article Sentences Final word-level attention distribution across three decoders at decoding time 
steps 't2' (after word "Because" ) 

2.  It was in the summer holidays about five or six years ago and I went with three
     friends. 

3. The plane and train were quite expensive, so we decided to travel by coach.

4. We left at five o'clock in the morning and the journey to London took about
    sixteen hours But we didn't mind: we were all very excited because for all four
    of us it was our first time away from home.

5. We stayed in London for three days, in a youth hotel not far from the centre. 

6. While we were there, we walked a lot.

7. First, we went to see all the famous sites-- Big Ben, Piccadilly Circus, Bucking-
    -ham Palace, then we went shopping in Oxford street. 

8. On the last morning my friends stayed in bed late, but I got up early and went
    to Camden market. 

9. You can buy all kinds of Jewelry and clothes there, and I bought a silver
      ring for my sister. 

10. It was really hot in the afternoon , so we went to Hyde Park for a game of
      football.

12. I've been back to London several times since then, but I don't think I'll ever
      feel as excited as I did that first time.

D
e
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o

d
e

r-
2

D
e
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o
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1

11. Unfortunately, I think the ring fell out of my pocket during the game, because
      I couldn't find it when I got on the coach that evening!

Figure 3.4: An overview of distractor generation from HMD-Net model.

selected Sentence 7, and Decoder 3 selected Sentence 10. Each decoder obtains word
distribution for the selected sentence and accordingly generates the next word.

3.7 Conclusion
In this paper, we have presented a Hierarchical Multi-Decoder Network (HMD-Net)
and its variants with linguistic features and BERT contextual embedding. It is a data-
driven approach to generate long and high-quality distractors from MCQ reading
comprehension. We exploited the rich interactions among question, answer, and
passage using the SoftSel operation and Gated Mechanism at the encoder side. On
the decoder side, we used three separate decoders to generate three distractors. The
distractors should not be lexically similar to each other or not very different. Our
model outperformed all baselines across automated and manual evaluation metrics.
We also prepared a high-quality new distractor generation dataset, RACE++DG.

3.8 Insights, Limitations and Future Work
Insights: One of the challenges we face in extracting contextual word embeddings
from the BERT model is due to BERT’s tokenization process, which breaks a word
into subwords. Keeping track of word mapping to subword splits was challenging in
the past, unlike today, where this feature is readily available in the Hugging Face
library [Jai22]. We explicitly introduce a flag to identify the word-to-subword map-
ping and then perform average pooling of hidden representations across subwords to
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obtain the final contextual representation of the word from the BERT model. The
other insight was the BERT-based model run-time was approximately 2 times that of
traditional word embedding models, possibly due to the large embedding dimension.

Limitations and Future Work: One of the limitations of the proposed model is
the extension of distractor generations to an arbitrary number of distractors. This
requires additional decoders and re-training of the model, which can be costly. A
hopeful direction is to add an additional diversifying module with a stranded encoder-
decoder model. Diversifying modules can trigger diverse generations without addi-
tional decoders. We have made a similar effort in [EMKD23] for diverse headline
generation that mitigates this limitation. Additionally, with the modern large lan-
guage model, the representation of the input can be obtained easily, and overall
modeling can be simplified. We have left this for future work.
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Chapter 4

Advancing Frontiers of NLG:
Personalized Query
Auto-Completions

4.1 Introduction
In this chapter, we continue to advance natural language generation (NLG) modeling.
We focus on the task of personalized Query Auto-Completion (QAC), which is a key
functionality of modern search engines. Unlike the previous chapter, this is a more
recent research effort that leverages large language models and trending modeling
techniques. In particular, we explore the Retrieval-Augmented Generation (RAG;
[KLJ+20, BMH+22]) modeling framework to improve the performance of personalized
QAC systems. Before delving into modeling details, let us first understand what the
PQAC task is and how the limited context in PQAC affects the system’s performance.

Query formulation could be time-consuming for naïve users or users with complex
information needs. Modern search engines, therefore, have a Query Auto-Completion
(QAC) module to assist users in efficiently expressing their information needs as a
search query. The goal is to help users finish their search task faster by accurately
understanding their query intent using the partially typed prefix. While users type a
partial search query (i.e., query prefix), the QAC system recommends a list of relevant
and complete queries (i.e., query auto-completions or suggestions).

Most of the popular search engines adopt a two-stage approach for QAC: candidate
retrieval and candidate ranking [CDR16]. A set of prefix-preserving suggestions is re-
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  Session:        || https://www.antlr.org/download/ || docker multistage || check url is valid || python learning
                         || antlr python docker || chmode || entrypoint ||
  Prefix:            entrypoint dock
  Completion:  entrypoint dockerfile

  Session:        || music index emory || changeling 5e || fantasy gachapon list || wizard spell list || cats grace item
                         dnd 5e || philosophers stone taz || taz relics || justin mcelroy reddit fat || griffin mcelroy || timer ||
                         greenflame 
  Prefix:            green f
  Completion:  green flame blade dnd 5e

Figure 4.1: Examples of session, prefix and completion. The session can have multiple
previously user-typed queries. Here, we consider the session which has heterogeneous
queries. Session queries are separated by ‘∥’.

trieved from a pool of complete candidate queries in the candidate retrieval stage1.
Typically, this is supported using a trie that records complete suggestions along
with their historical popularity scores computed over a time window. Candidate re-
trieval could leverage various heuristics like historical candidate popularity, language
or region-based affinity, freshness, etc. In the candidate ranking stage, these retrieved
queries are ranked based on a larger list of features, including popularity, the user’s
previous search intent, the user’s profile, etc. Finally, top-N-ranked candidates are
shown to the user.

Although QAC has been studied for many decades, there are two major challenges
yet to be solved.

1. Short Prefixes: High-quality completions for very short prefixes are the most
desirable feature for any QAC system. But short prefixes are likely to have
a huge candidate pool from the trie, and most of the QAC models return the
most popular completions that may not be relevant.

2. Unseen prefixes: Trie-based systems fail to provide recommendations for
prefixes that have never been recorded previously, i.e., not a part of the query
log. We refer to such prefixes as unseen prefixes.

To overcome these problems, more recently, seq2seq neural models have gained
attention [DRAF17, MLP20, YTZ+20]. Besides the current prefix, these neural
network-based NLG models are more powerful because they can also utilize relevant
session information to recommend personalized query completions. But even NLG
models have the following drawbacks: (1) Unlike trie-based methods, NLG models
cannot directly incorporate historical popularity which is a very important signal. (2)

1A small percentage of suggestions are not prefix preserving; in this work, we focus on prefix-
preserving suggestions only.
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With increased levels of multi-tasking, sessions have become heterogeneous, diverse,
and dynamic. This makes it difficult to focus on session queries relevant to the current
prefix [YTZ+20]. A few such session examples are presented in Fig. 4.1. (3) Attention-
based NLG methods that attempt to discover relevant session queries by computing
similarity with prefix representations suffer when prefixes are too short. Misleading
attention leads to poor completions and (4) As the unseen prefixes are typed rarely,
corresponding session information may not be very relevant. In summary, the lack of
proper context for short and unseen prefixes leads to poor performance in NLG-based
PQAC systems.

NLG models are capable of capturing the semantic relationships between existing
session queries, prefixes and completion. On the other hand, information in tries is like
frequency-based high-confidence rules that capture relationships between prefixes and
completions in a syntactic manner. We hypothesize that jointly leveraging popularity
signals from trie, semantic and personalization signals from previous session queries
using an NLG mechanism is essential for effective QAC. Based on this hypothesis,
we propose a novel model for QAC, Trie-NLG, which uses a sequence-to-sequence
Transformer architecture. To the best of our knowledge, such joint modeling of NLG
techniques with popularity signals from trie for query auto-completion has not been
studied in the literature.

We explore the RAG framework for the modeling. Given a prefix, Trie-NLG
first extracts up to top-m most popular completions from the trie. We utilize a trie
with around one billion suggestions constructed using 1.5 years of past query logs (Jul
2020 to Dec 2021) from Bing. For unseen prefixes, trie lookups lead to no (prefix-
preserving) matches. To solve this problem, inspired by [MC15], we first index all
suffix word n-grams from query logs into a suffix trie along with suffix popularity. We
then look up unseen prefixes against the suffix trie to extract the top most popular
synthetic completions. These m popularity-based completions, either from the main
trie or from the suffix trie, are augmented as external context along with session
queries and prefixes and passed as input to the seq2seq model. We hope that having
additional context from trie-lookup will enable the NLG model to retain/copy good
quality completions along with the generation of the novel but relevant completions.

Overall, our main contributions are as follows:

• We motivate the need for incorporating both popularity signals from tries and
personalization signals from previous session queries for effective QAC, espe-
cially for short and unseen prefixes.
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• We propose a novel architecture, Trie-NLG, which consists of a seq2seq Trans-
former model trained using rich context comprising of recent session queries and
top trie completions. To the best of our knowledge, this is the first attempt of
trie knowledge augmentation in NLG models for personalized QAC.

• Our proposed model provides state-of-the-art performance on two real prefix-to-
query click behavior QAC datasets from Bing and AOL. We also perform several
analyses including ablation studies to prove the robustness of the proposed
model.

4.2 Related Work
In this section, we focus on three threads of related work for Query Auto-Completion
(QAC), viz., traditional, learning-based, and language generation-based approaches.

4.2.1 Traditional Approaches for QAC

Most of the traditional QAC systems leverage tries [HO13] which store historical
co-occurrence statistics of prefix and complete query pairs. The most popular QAC
approach using trie lookups is “Most Popular Completion” (MPC; [BYK11]) which
suggests top-N most popular (frequent) queries that start with the given prefix. Mitra
et al. [MC15] extended this approach to generate candidates for rare prefixes using
frequently observed query suffixes mined from historical search logs. On similar lines,
other methods rely on term co-occurrence [HCO03], user click information [MZC08],
clustering queries [SMWH10], and using word level representations [BPS+12]. Some
previous studies [BMM11, MBH17] also focused on modeling approaches when search
logs are not available.

4.2.2 Learning-Based Approaches for QAC

Query log-based approaches are usually context-agnostic and suffer from data sparsity
issues. It is critical to leverage context for capturing personalized intent and behav-
ior. To cope with these limitations, different sources of knowledge have been exploited
in the candidate ranking stage with the learning-to-rank framework [WBSG10]. These
additional signals include session information [BYK11, JKCC14], user behavior [HMRS14,
MSRH14], personalization [CLDR14, Sho13] and time/popularity-sensitivity [SR12].
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Learning methods include LambdaMART [Bur10], logistic regression [Sho13], convo-
lutional neural network (CNN; [MC15]), deep learning based ranking model (DRM;
[ZZS+18]), and eXtreme Multi-Label Ranking [YSH+21]. These ranking models, how-
ever, fail to generate completions for unseen prefixes. Unlike these, we develop NLG
models that capture personalization, learn contextual input representations, and pro-
vide completions even for unseen prefixes.

4.2.3 NLG-Based Approaches for QAC

Recently, sequence-to-sequence language model-based approaches have also been tried
for QAC [PC17, WZM+18]. Given a prefix and optionally personalization informa-
tion, these models generate prefix-preserving completions. These models can generate
completions for unseen prefixes. Wang et al. [WZM+18] use LSTM (Long Short-
Term Memory networks) and GRU (Gated Recurrent Units) based character-level
language models to generate completions. Dehghani et al. [DRAF17] proposed GRUs
with attention and copy mechanisms to incorporate the most prominent part of the
previous queries. Mustar et al. [MLP20] and Yin et al. [YTZ+20] proposed Trans-
former [VSP+17] based models. Yin et al. [YTZ+20]’s approach requires additional
browsed item information and also needs CTR values as labels to train the model.
Moreover, these generation models still fail to generate good completions for short
and rare prefixes. Unlike these methods, inspired by the RAG modeling framework
[KLJ+20, BMH+22], we encode additional trie context along with a session in the
NLG model, which leads to more meaningful completions for short, rare, and unseen
query prefixes. Note that in our case, additional context is obtained from tries that
are a part of any QAC system. This additional context mitigates the issue of limited
context in QAC.

4.3 Problem Formulation
Consider a user u whose previous n queries (earliest to latest order) in the current
session s are {q1, q2, …, qn}. The user is typing the current query q, where p is the
query prefix typed so far. Additionally, there are up tom candidate query completions
(top-ranked to low-ranked order) {c1, c2, …, cm} available as additional context e from
a trie. We aim to generate top-N query completions conditioned on current query
prefix p, additional trie context e, and session information s. Mathematically, the task
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can be formulated as learning a model with parameters θ such that the probability
of generating query q has to be maximized. The probability of generating query q is:

Pθ(q|p; c1, c2, . . . , cm; q1, q2, . . . , qn) (4.1)

Here, we consider the value of N to be equal to 8, i.e., the number of auto-
completions is 8.

4.4 Methodology
The proposed Trie-NLG model extracts a few completions from the trie and aug-
ments them as part of the input to an NLG model. For a given prefix, up to top-m
completions are extracted as additional context from the trie using MPC. Those pre-
fixes for which completions can be obtained from the MPC are called Seen prefixes,
while those for which completions are not present are called Unseen prefixes. For seen
prefixes, we leverage the main trie, and for unseen prefixes, we leverage a new trie
called the suffix trie. These suggestions from the main or suffix trie are augmented
with previous queries in the session and the current prefix and passed as input to the
NLG model to generate accurate completions. Fig. 4.2 illustrates the overview of the
proposed model. To enable a concrete understanding of the proposed model, we con-
sider two running examples. For simplicity, we only consider the prefix and ground
truth completion in the ⟨prefix, completion⟩ template. Example-1: ⟨go, google.com⟩
and Example-2: ⟨kindle e-reader, kindle e-reader questionnaire⟩.

4.4.1 Trie Context Extraction (MPCMain)

To extend the context associated with seen prefixes, top-ranked completions are ex-
tracted from the main trie (called MPCMain) which has been created using 1.5 years’
worth of Bing query logs. Given a prefix p, MPCMain provides up to m completions
{c1, c2, …, cm }. In case the prefix is not present in the trie, the lookup will return
no responses. For our running example-1, for the prefix go, MPCMain returns three
completions: google, google.com, and good. However, for running example-2 prefix
kindle e-reader, no completions are obtained from MPCMain. The prefix go is referred
to as seen prefix, while kindle e-reader is referred as unseen prefix.

{c1, c2, . . . , cm} = MPCMain(p) (4.2)
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Seen Prefix: 'go' Unseen Prefix: 'kindle e-reader'

Seen Completions:
(1) google
(2) google search
(3) good

Unseen Completions:
(1) kindle e-reader book
(2) kindle e-reader price
(3) kindle e-reader questions 

Session [SEP] Completions [SEP] PrefixInput Template

          google direction, text reader, google, https://www.google.com [SEP] google, google search, good [SEP] goSeen Example

 kindle customer support, kindle FAQ [SEP] kindle e-reader book, kindle e-reader price, kindle e-
reader questions  [SEP] kindle e-reader

Unseen Example
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(1) kindle e-reader questionnaire
(2) kindle e-reader questions
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Figure 4.2: An overview of the proposed Trie-NLG model

4.4.2 Synthetic Context Extraction (MPCSynth)

For unseen prefixes, the MPCMain fails to provide any completions. In such cases,
we make use of another trie called the suffix trie which is created by indexing all
suffix word n-grams from query logs along with suffix popularity. Here, we consider
all the queries across all the sessions from the training dataset. Since the suffix word
n-grams may not be actual queries, we call them synthetic completions. Formally, if
a query contains n words {w1, w2...wn}, its substrings from each i ∈ {2, · · · , n−1} to
n is called suffix. These suffixes are organized in another trie called the suffix trie (or
MPCSynth). For a given unseen prefix pu, we look up the suffix MPCSynth to obtain
the synthetic completions as:

{c1, c2, . . . , cm} = MPCSynth(pu) (4.3)

For example, given a query university of west florida, the suffix trie will store
synthetic completions like florida, west florida and of west florida. The suffix trie
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has key and associated values and frequency. For the above example, the suffix trie
looks like this (simplified): { university: of west florida (1), university of: west
florida (1), university of west: florida (1) }. Frequency is indicated in the bracket.
We lookup unseen prefixes against the suffix trie to extract top-m most popular
synthetic yet useful completions. Note that these lookups still attempt to match
the unseen prefix with prefixes of suffixes indexed in the suffix trie. In this way, we
will be able to obtain completions for unseen prefixes that can not be obtained from
MPCMain. Although this idea is similar to one described by [MC15], unlike them, we
consider the whole prefix and not only end-term of the prefix. If a prefix has multiple
words, the last partial word is the end-term. The whole prefix has more meaningful
contextual representation than end-term representation which leads to more accurate
completions. For running example-2, MPCSynth returns three completions for the
unseen prefix kindle e-reader: kindle e-reader book, kindle e-reader price, and kindle
e-reader questions.

4.4.3 Context Augmentations in NLG

After obtaining trie suggestions, each data point consists of the session information
(s), additional trie context (e), prefix (p), and the corresponding completion (q). We
consider an Encoder-Decoder-based NLG model that takes the triplet ⟨s, e, p⟩ as input
and attempts to generate the complete query (q). The input is provided to the model
as a text sequence, where each element of the triplet is separated by a special token
[SEP]. Trie context, i.e., top-m candidate completions are obtained from MPCMain or
MPCSynth. During model training, the input triplet is first fed through the encoder
to obtain a contextual representation. These contextual representations are semantic
encodings of ⟨s, e, p⟩, which is key for the model’s performance, particularly for short
and unseen prefixes. Then, this contextual representation is passed through the
decoder to generate top-N completions.

Relevant contextual suggestions from tries help the model with additional input
that can guide the generation process. As typically the queries in a user session are
often correlated in terms of the user’s information need, the session context helps
the model in understanding the user’s current requirement. On the other hand,
through the suggestions from the trie which is backed by historical query logs, a
global perspective of the prefix and its possible completions preferred by a large
user base can be obtained. The model thereby gets to see a local (concerning the
user) as well as a global (concerning a large user pool) perspective surrounding the
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current prefix, and can appropriately utilize these inputs through language models
pre-trained on large general-purpose corpora that understand semantic and syntactic
aspects of natural language text. We hypothesize that the combination of these input
and modeling choices makes the model superior for the target personalized QAC task.

The model is trained to maximize the probability of ground truth token sequence
with maximum likelihood estimation (MLE). So, the following loss function is mini-
mized:

L = −
D∑

i=1

|yi|∑

t=1

logP i
t (ŷ

i
t|ŷi0:t−1; p; e; s) (4.4)

where D is the training dataset size, |yi| is the length of the i-th ground-truth query,
ŷt denotes token generated at time step t. P i

t is the prediction probability distribution
at t-th decoding step to generate the next token conditioned on previously generated
tokens, prefix, trie context and session. The top-N completions are generated using
beam search. For both running examples, both MPCMain and MPCSynth failed to
produce the correct ground truth completion. However, with context augmentation in
NLG, it can be observed that for the prefix go, the final completion includes the correct
completion google.com. Similarly, the prefix kindle e-reader has the correct completion
kindle e-reader questionnaire. This demonstrates the effectiveness of augmenting
additional context in the NLG for QAC systems.

4.5 Datasets and Experimental Setup
In this section, first, we will provide a detailed overview of the dataset, along with
analyses. Then, we will provide details of the experimental setup, including the
baseline, evaluation metrics, and other relevant information.

4.5.1 Datasets and Analysis

In this subsection, we present the details of the datasets, including data construction
steps, pre-processing and some critical observations. We use two datasets: (1) Bing
query log and (2) AOL public query log [PCT06]. The Bing dataset covers 9.08 million
users, while the AOL dataset corresponds to 0.50 million users. The raw AOL query
log consists of a sequence of queries entered by the users along with time-stamp details.
We first pre-process the dataset by lower-casing all the queries, removing duplicate
and single-character queries, and removing queries with a dominating (>50%) number
of non-alphanumerics. Following previous studies [SBV+15b, YSH+21], we split the

61



Char Train Validation Test
Length Total Seen Unseen Total Seen Unseen Total Seen Unseen
Total 20.40M 17.86M 2.54M 100K 92.43K 7.57K 100K 92.80K 7.20K
[1-5] 9.10M 8.80M 0.30M 40.68K 40.39K 0.29K 40.46K 40.19K 0.27K
[6-10] 4.30M 4.10M 0.20M 21.40K 21.07K 0.33K 21.62K 21.24K 0.38K
10+ 7.00M 4.96M 2.04M 37.92K 30.97K 6.95K 37.92K 31.37K 6.55K

Table 4.1: Prefix distribution statistics for Bing dataset with prefix character length.
‘M’ and ‘K’ indicate that the value is in the order of millions and thousands respec-
tively.

Char Train Validation Test
Length Total Seen Unseen Total Seen Unseen Total Seen Unseen
Total 3.91M 3.47M 0.44M 100K 88.73K 11.27K 100K 88.69K 11.31K
[1-5] 1.42M 1.42M 0.00M 35.55K 35.54K 0.01K 36.59K 36.56K 0.03K
[6-10] 1.15M 1.11M 0.04M 29.53K 28.67K 0.86K 29.51K 28.61K 0.90K
10+ 1.34M 0.94M 0.40M 34.92K 24.52K 10.40K 33.90K 23.52K 10.38K

Table 4.2: Prefix distribution statistics for AOL dataset with prefix character length.
‘M’ and ‘K’ indicate that the value is in the order of millions and thousands respec-
tively.

sequence of queries into sessions with at least 30 minutes of idle time between two
consecutive queries. We only retain those sessions which have at least two queries.
Next, for a given session with queries (in earliest to latest order) {q1, q2, …, qn, qn+1}
we create a triplet r = {(q1, q2, . . . , qn), pn+1, qn+1} where pn+1 is a sampled prefix of
query qn+1. Sampling follows an exponential distribution favoring shorter prefixes.
Each such triplet is a data point for modeling where input is all session queries except
the last one, additional trie context, and prefix pn+1. Ground-truth output is the last
session query qn+1.

Unlike the AOL dataset, where the prefix-to-query information is not explicitly
available, and the prefixes are synthetically created by splitting a full query, the Bing
dataset consists of real prefixes. Each example of the dataset consists of the user’s
session information s, current real prefix pn+1, and real clicked completed query qn+1.
The dataset is obtained by considering only those cases where there was at least one
past query in the user session, and the user has set their primary language as English.

Each dataset has two splits: Seen Dataset and Unseen Dataset. To obtain these
splits, we use a trie (i.e., MPCMain) with around one billion suggestions constructed
using 1.5 years of past Bing query logs (Jul 2020 to Dec 2021). For a given prefix,
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if the trie contains at least one completion, then the prefix is called a Seen Prefix.
Else, it is called an Unseen Prefix. The set of all Seen Prefixes (along with other
search log attributes) is referred to as Seen Dataset and the set of all Unseen Prefixes
is called Unseen Dataset. Statistics of Bing and AOL datasets shown in Tables 4.1
and 4.2 respectively, indicate that there are 12.4% and 11.4% unseen prefixes in the
training part of Bing and AOL datasets respectively. The AOL and BING datasets
each contain three sub-splits, namely train, validation, and test, which are based on
temporal information and are applicable to both seen and unseen datasets as well.
The timestamps for the train, validation, and test datasets are denoted as ttrain,
tvalidation, and ttest, respectively. It is stipulated that ttrain is the least recent of the
three timestamps, and tvalidation and ttest are of increasing temporal proximity, with
ttest being the most recent of the three.

To analyze the accuracy of various methods for different splits of the dataset, we
created three prefix-length buckets: between 1 to 5 characters, 6 to 10 characters, and
greater than 10 characters. Prefix distribution statistics with respect to each bucket
are also reported in Tables 4.1 and 4.2 for Bing and AOL datasets, respectively. We
observe that ∼45% and ∼36% of the prefixes from the training datasets have lengths
less than 6 for Bing and AOL, respectively. This indicates the dominance of short
prefixes and necessitates the design of better modeling techniques. An approach that
provides additional context (as we proposed) is promising. We also observe that
∼80% and ∼91% of the unseen train dataset have prefix lengths 10+ characters for
Bing and AOL respectively, which is another reason for them being less popular. The
addition of more relevant context from tries may lead to better completions in such
scenarios. We also observe that the average number of queries in a session for Bing is
5.2 and for AOL is 2.4. This provides diverse personalization contexts better to judge
the applicability and usefulness of the models. Overall, unseen and short prefixes in
QAC are frequent and challenging problems.

4.5.2 Evaluation Metrics

We evaluate all the baselines and proposed model with three evaluation metrics. To
cover multiple aspects of the evaluation, we use both ranking-oriented metrics (MRR)
and metrics to identify the quality of the generated sequence (BLEU and BLEURR).

1. Bilingual Evaluation Understudy (BLEU): It is a popular metric used for
multiple NLG tasks. For our experiments, BLEU evaluates the degree of lexical
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match between the ground-truth complete query and the first ranked generated
query.

2. Mean Reciprocal Rank (MRR): MRR is one of the most popular metrics
for evaluating ranking systems. MRR score is calculated as

MRR =
1

Dts

Dts∑

i=1

1

ri
(4.5)

Here, Dts is the size of the test dataset and ri is the rank of the ground-truth
complete query in the generated rank list for the ith input. If the ground-truth
complete query is not in the generated rank list, then ri is set to ∞.

3. BLEU Reciprocal Rank (BLEURR; [YSH+21]): It is defined as the re-
ciprocal rank weighted average of BLEU score between the ground-truth query
and generated completions.

BLEURR =
1

Dts

Dts∑

i=1

∑N
j=1

1
j
BLEU(q, q′i,j)∑N

j=1
1
j

(4.6)

where q is the ground-truth complete query and q′i,j is the j-th generated com-
pletion for the i-th test example.

4.5.3 Baselines

Our proposed model is based on both NLG and Trie models. Such joint modeling of
NLG systems with popularity signals from trie has not been previously explored. To
thoroughly evaluate its performance, we have carefully selected ten diverse baselines,
including the traditional trie-based models (MPC, MPC+SynthMPC), ranking model
(GRM), deep learning models (LSTM, Transformers) and pre-trained NLG models
(T5, BART). In light of the superior performance demonstrated by transformer-based
models, we have also included multiple strong transformer-based baselines. As our
focus is on generation rather than ranking, we have selected more generative baselines
for comparison. However, the outputs of our proposed model can be used as features in
learning-to-rank and traditional models. The following baselines have been considered
for comparison with the proposed model:
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1. MPCTrain: This uses the traditional MPC method [BYK11]. The candidate
rankings are obtained based on the popularity of each query from the historical
query log. Here the historical query log is the training data itself.

2. MPCMain: In this baseline the completions are obtained using the main trie
created using 1.5 years of historical query logs from Bing.

3. MPCTrain + MPCSynth/MPCMain + MPCSynth: Completions are obtained
using MPCTrain and MPCSynth/MPCMain for seen and unseen prefixes resp.

4. GRM: We first represent a session, prefixes and complete query as a bag-of-
word (BOW) vector and then LambdaMART is trained with these features.

5. Seq2Seq LSTM: Standard LSTM based sequence-to-sequence model with at-
tention. Input is a prefix and the target is the complete query.

6. Seq2Seq Transformer: Standard Seq2Seq Transformer model with architec-
ture similar to T5-base. We train the model from scratch. Input is “session
[SEP] prefix” and the target is the complete query.

7. T5: Same as Seq2Seq Transformer, except that we fine-tune T5-base [RSR+20b]
on the QAC dataset.

8. BART: Similar to [MLP20], we fine-tune BART-base [LLG+19] with QAC
dataset. Input and output are the same as that of T5.

9. BART + Implicit Trie Context (ITC): In this modeling, we try to augment
trie’s knowledge implicitly. It is a two-step training procedure: (i) BART-base
is fine-tuned using a dataset, which consists of session and prefix as input and
top m suggestions from MPCMain/MPCSynth as the target. (ii) This training
checkpoint is further trained with the QAC dataset, where the input is the
session and the prefix and output are the clicked query. In the second step,
we freeze the parameters of the first six decoder layers to retain the trie-based
knowledge. During inferencing, the model checkpoint obtained from the sec-
ond stage of training takes prefix and session as input and outputs the query
suggestion.

10. BART + MPCMain: This baseline augments the trie knowledge explicitly.
With each training example, we add up to top-m trie completions as additional
context. There are no completions for unseen prefixes. Input is session, prefix,
and additional trie context and output is the clicked query.
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4.5.4 Implementation Details

The proposed model and all the baselines are implemented in Python. GRM is im-
plemented using learning to rank library2 and seq2seq LSTM is implemented using
Texar3. All the transformer-based models are implemented using HuggingFace Li-
brary4. All the experiments were conducted on eight A100 Azure cloud GPUs. The
batch size is 128; the learning rate is 1e-4, the scheduler is ‘linear,’ the number of
epochs is 5, and early stopping was enabled. We used the Adam optimizer with a
max source length of 200 and a max target length of 32. BART-base has 6 layers,
and 12 heads, layer normalization was enabled and the hidden layer dimension is 768.
For the generation, the number of beam size (i.e., k) is 8, the maximum sequence
length is set to 16, and the repetition penalty5 is 0.6. We applied grid search for
hyper-parameter tuning on the validation dataset and all the scores are reported on
the test dataset. We experimented with 1, 3, 5, and 8 as values of m, the number of
suggestions to extract from the trie. Based on the results of the validation dataset,
m = 3 was selected for running experiments on the test data. We make our code
publicly available6.

4.6 Results and Discussions
In this section, we present and analyze results of different baselines and the proposed
model.

4.6.1 Overall Performance Comparison

Tables 4.3 and 4.5 summarize the experimental results on the Bing and AOL datasets,
respectively. Due to the confidential nature of the Bing dataset, we cannot report
the exact values of the metrics. This is common practice in many previous stud-
ies [RJG+18] as well. Hence, in Table 4.3 and the rest of the paper we report percent-
age improvement scores of the models over reference MPCTrain + MPCSynth baseline
for the Bing dataset. We cannot use MPCTrain as a reference for showing percentage
improvements as the model does not have any completions for unseen prefixes. For
the publicly available AOL dataset, we report exact evaluation scores across all three

2https://github.com/jma127/pyltr
3https://github.com/asyml/texar
4https://huggingface.co/
5https://huggingface.co/blog/how-to-generate#appendix
6https://github.com/kaushal0494/Trie-NLG
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Seen + Unseen Dataset Seen Dataset Unseen Dataset
Models ∆MRR ∆BLEURR ∆BLEU ∆MRR ∆BLEURR ∆BLEU ∆MRR ∆BLEURR ∆BLEU
MPCTrain -7.90 -19.87 -24.64 0.00 0.00 0.00 - - -
MPCMain -0.11 36.61 26.38 8.49 70.38 63.68 - - -
MPCMain + MPCSynth 7.78 56.42 47.01 8.49 70.38 63.68 0.00 0.00 0.00
GRM -1.43 -5.32 -5.51 4.30 19.02 16.58 - - -
Seq2Seq LSTM 9.61 39.30 56.78 10.24 44.02 72.20 5.34 16.61 91.45
Seq2Seq Transformer 15.74 54.22 76.16 18.24 55.07 82.46 10.53 24.20 99.29
T5 20.78 61.81 78.70 20.76 70.83 85.13 21.60 27.33 103.98
BART 36.73 73.47 91.09 36.95 84.51 100.47 34.53 29.03 110.35
BART + ITC 31.66 71.43 88.72 31.58 81.97 96.84 33.05 29.12 111.00
BART + MPCMain 54.12 86.77 110.78 56.14 101.35 129.00 34.10 28.04 110.80
Trie-NLG 56.78 88.26 114.52 56.56 101.99 130.04 59.74 33.02 123.07

Table 4.3: Results of the models on Bing dataset. The reported scores are percentage
(%) improvements over MPCTrain + MPCSynth baseline. ‘-’ indicates no completions
are retrieved/generated for the model. Here we consider up to 3 completions as
additional context from MPCMain or MPCSynth. GRM is a ranking model based on
clicked queries. As the Unseen dataset does not have click information, GRM models
cannot be built.

Seen + Unseen Seen Dataset Unseen Dataset
Models ∆MRR ∆BLEURR ∆BLEU ∆MRR ∆BLEURR ∆BLEU ∆MRR ∆BLEURR ∆BLEU
MPCTrain -34.18 -55.37 -61.97 0.00 0.00 0.00 - - -
MPCMain -37.06 -18.18 -39.05 -4.31 83.60 52.64 - - -
MPCMain+MPCSynth -2.87 37.19 19.10 -4.31 83.60 52.64 0.00 0.00 0.00
GRM -30.35 -39.66 -48.40 6.03 36.06 19.70 - - -
Seq2Seq LSTM 40.25 21.48 28.25 87.93 111.47 152.23 -50.52 -50.08 -27.68
Seq2Seq Transformer 45.04 38.84 43.39 91.81 142.62 165.72 -45.48 -44.97 -23.03
T5 53.67 43.80 48.70 100.86 149.18 174.08 -37.5 -41.05 -19.31
BART 65.81 51.23 54.33 116.81 163.93 185.47 -32.03 -39.01 -16.84
BART+ITC 61.98 51.23 53.49 111.63 163.93 183.68 -33.29 -38.84 -17.16
BART+MPCMain 69.96 53.71 55.81 123.27 168.85 190.30 -32.66 -39.35 -17.19
Trie-NLG 80.51 59.50 66.15 124.56 170.49 190.20 -3.25 -29.81 -1.08

Table 4.4: Results of the models on AOL dataset. The reported scores are percentage
(%) improvements over MPCTrain + MPCSynth baseline. ‘-’ indicates no completions
are retrieved/generated for the model. Here we consider up to 3 completions as
additional context from MPCMain or MPCSynth. GRM is a ranking model based on
clicked queries. As the Unseen dataset does not have click information, GRM models
cannot be built.
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Seen + Unseen Dataset Seen Dataset Unseen Dataset
Models MRR BLEURR BLEU MRR BLEURR BLEU MRR BLEURR BLEU
MPCTrain 20.6 5.4 15.25 23.2 6.1 19.49 - - -
MPCTrain + MPCSynth 31.3 12.0 40.10 23.2 6.1 19.49 95.2 58.7 95.66
MPCMain 19.7 9.9 24.44 22.2 11.2 29.75 - - -
MPCMain + MPCSynth 30.4 16.6 47.76 22.2 11.2 29.75 95.2 58.7 95.66
GRM 21.8 7.3 20.69 24.6 8.3 23.33 - - -
Seq2Seq LSTM 43.9 14.7 51.43 43.6 12.9 49.16 47.1 29.3 69.18
Seq2Seq Transformer 45.4 16.8 57.50 44.5 14.8 51.79 51.9 32.3 73.62
T5 48.1 17.4 59.63 46.6 15.2 53.42 59.5 3461 77.18
BART 51.9 18.3 61.89 50.3 16.1 55.64 64.7 35.8 79.55
BART + ITC 50.7 18.3 61.55 49.1 16.0 55.29 63.5 35.9 79.24
BART + MPCMain 53.2 18.6 62.48 51.8 16.4 56.58 64.1 35.6 79.21
Trie-NLG 56.5 19.3 66.63 52.0 16.5 56.56 92.1 41.2 94.62

Table 4.5: Results of the models on AOL dataset. Here we report exact evaluation
scores, unlike the ones for the Bing dataset. We consider up to 3 completions as
additional context from MPCMain or MPCSynth. GRM is a ranking model based on
clicked queries. As the Unseen dataset does not have click information, GRM models
cannot be built.

metrics. We also report percentage improvement scores of the models over reference
MPCTrain + MPCSynth baseline for the AOL dataset in Table 4.4. Overall, our pro-
posed Trie-NLG outperforms all the traditional, ranking, and generative models,
across both the datasets (including Seen and Unseen) and all three metrics. Paired
t-test shows that Trie-NLG outperforms the best baseline statistically significantly
across both the datasets for each of the three metrics with a p-value less than 0.05.

Note thatMPCTrain+MPCSynth andMPCMain+MPCSynth have identical results
for “unseen” datasets. Similarly, MPCTrain and MPCTrain + MPCSynth yield same
results for “seen” dataset. This is expected becauseMPCTrain andMPCMain provide
trie suggestions for seen prefixes; whileMPCSynth provides trie suggestions for unseen
prefixes.

Without MPCSynth, the MPCTrain and MPCMain do not have completions for the
Unseen dataset. MPCSynth provides completions for the unseen prefixes and boosts the
overall model performance. As expected, the generative models provide suggestions
for unseen prefixes, unlike ranking and database lookup models. Evaluation scores of
Seq2Seq Transformer and pre-trained models (i.e., T5 and BART) indicate that the
pre-trained models provide better input representation and perform better. BART +
ITC fuses the additional context (top-ranked completions obtained from MPCMain)
implicitly with two-step training. However, the results are not promising, indicating
that the model’s learning is distracted in the two-stage training. Overall, adding
explicit context leads to better performance, as shown in BART + MPCMain model.
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Eventually, adding context from MPCMain and MPCSynth helps the proposed Trie-
NLG model perform the best.

The absolute evaluation scores for Unseen AOL data are much higher as compared
to Seen AOL data. We observe similar trends for the Bing dataset as well. There
could be two possible causes for this: (1) Unseen dataset is ∼11% of the original
data, and hence it is much smaller compared to the Seen dataset, and (2) the average
prefix lengths for Seen AOL, Unseen AOL, Seen Bing, and Unseen Bing, are 8.1,
20.9, 14.5 and 25.9 respectively. In the Unseen dataset, the lengths of the prefixes
are longer compared to Seen, which provides more context and the generative models
perform better. Most of the baseline models’ performance on the Unseen dataset is
very poor, but the proposed Trie-NLG achieves much better performance which
shows the promising prospect of our approach. GRM is a ranking model based on
clicked queries. As the Unseen dataset does not have click information, GRM models
cannot be built.

The MPCMain + MPCSynth model is the best-performing model for the AOL
Unseen dataset, and it surpasses the Trie-NLG by a small margin. However, for
the Bing Unseen dataset, the proposed model outperformed all the models. There
can be multiple possible reasons behind this observation. For example, (1) Dataset
Timeline: The AOL dataset is from 2006 while Bing data was collected in 2020-
21. Pre-trained NLG models (like BART and T5) have been trained with recent
corpus whose vocabulary is expected to be better aligned with recent Bing data
rather than AOL. Final suggestions from the model for Unseen AOL data are hence
governed by only the partially-aligned language model and without any context from
the trie. (2) Query Log Size: Bing dataset has 20M queries compared to 4M
in AOL dataset. This leads to better synthetic suggestions for Bing, in turn leading
to better context augmentation for the Bing Trie-NLG model. (3) Prefix and
Session Lengths: The prefix and session length for Bing (4.434 tokens/prefix and
5.619 queries/session) are longer as compared to AOL (3.061 tokens/prefix and 2.530
queries/session). Longer prefixes and sessions lead to better NLG completions for
Bing. Recent search interactions for users do involve longer sessions, and the proposed
model is expected to do well in such scenarios.

The overall evaluation results indicate that neither trie nor NLG models are effec-
tive individually for such a challenging scenario. The proposed hybrid approach that
considers the benefits of both worlds (language semantics from NLG and popularity
statistics from trie) through a joint modeling technique is a promising approach and
can push the QAC research field forward.
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Prefix Length in [1-5] Prefix Length in [6-10]
Bing Dataset ∆MRR ∆BLEURR ∆BLEU ∆MRR ∆BLEURR ∆BLEU
BART 21.6 -17.6 2.9 38.5 38.4 56.8
BART + MPCMain 52.1 -16.8 10.1 55.2 49.3 72.1
Trie-NLG 53.2 -15.9 11.4 56.4 50.1 73.6
AOL Dataset MRR BLEURR BLEU MRR BLEURR BLEU
BART 41.3 8.0 35.39 52.2 14.3 53.39
BART + MPCMain 41.5 8.0 35.25 54.1 14.7 54.08
Trie-NLG 42.1 8.1 35.58 55.2 14.9 55.56

Prefix Length 10+
Bing Dataset ∆MRR ∆BLEURR ∆BLEU
BART 49.1 190.0 120.1
BART + MPCMain 55.6 218.5 145.1
Trie-NLG 60.7 221.1 149.5
AOL Dataset MRR BLEURR BLEU
BART 63.2 32.8 75.40
BART + MPCMain 65.1 33.4 76.20
Trie-NLG 73.4 35.1 82.79

Table 4.6: Performance analysis for short prefixes. For Bing, % improvements over
MPCTrain+MPCSynth are reported. For AOL, actual scores are reported.

4.6.2 Performance Analysis for Short Prefixes

Table 4.6 shows the performance of our proposed Trie-NLG model and two best
baselines BART and BART+MPCMain for different prefix lengths. The evaluation
scores are reported for three different buckets based on the character length of the
prefix: [1-5], [6-10] and 10+. The evaluation scores in the 10+ bucket are higher
as compared to the other two. It indicates that as the prefix length increases, the
performance of all the models increases. It is aligned with the intuition that the
model generates more accurate predictions as the prefix becomes longer. The model
performance improves across both datasets for short prefixes as the additional context
is added, i.e., BART+MPCMain performs better as compared to BART. Moreover,
when synthetic completions are included further, i.e., Trie-NLG, it outperforms
both the baselines even for very short prefixes. This provides evidence that adding
additional trie knowledge does help to increase relevant context for short prefixes.
A few of the ∆ BLEURR scores for Bing are negative for prefix lengths [1-5]. This
implies that the performance of the MPCMain+MPCSynth model is superior to the three
models considered, i.e., BART, BART+MPCMain, and Trie-NLG. Despite this, the
lower negative values for Trie-NLG demonstrate that its performance is better than
the other two models. The reason behind this could be attributed to the fact that
(1) the MPCMain+MPCSynth model demonstrates the best performance for the Bing
Unseen dataset in terms of unseen prefixes, as discussed in Section 4.6.1, and (2) the
∆ BLEURR metric takes into account both the BLEU and MRR scores. However,
other metrics’ results show consistent improvement across all prefix types and both
datasets.

4.6.3 Ablation Study

Table 4.7 presents ablation results with different experimental setups. In setups 1
to 3, we have removed session and/or external contexts. The model performs worst
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# Ablation Bing Dataset AOL Dataset
Criteria ∆MRR ∆BLEURR ∆BLEU MRR BLEURR BLEU

1 No (Trie Context + Session) -29.5 -1.5 43.1 5.7 5.9 30.9
2 No Trie Context 36.7 73.5 91.1 51.9 18.3 61.9
3 No Session 29.3 47.3 73.7 15.4 9.5 40.6
4 Trie-NLG(1) 44.8 81.3 104.8 32.3 15.1 54.4
5 Trie-NLG(5) 50.9 82.9 110.0 42.6 17.3 59.6
6 Trie-NLG(8) 52.9 83.8 111.4 28.5 13.8 51.5
7 Trie-NLG(3) 56.8 88.3 114.5 56.5 19.3 66.6

Table 4.7: Results of ablation study using different experimental setups. Trie-
NLG(m) means “Trie-NLG + Up to Top-m Completions”. For the Bing dataset,
percentage improvements over MPCTrain+MPCSynth baseline are reported. For the
AOL dataset, actual evaluation scores are reported.

when both the information are removed (setup 1). Modeling with only session (setup
2) performs better than a model that uses only trie context (setup 3), which shows
the importance of the user’s previous search query log. However, setups 4 to 7 that
use both pieces of information perform even better, indicating the importance of both
types of context. Setups 4 to 7 differ from each other in the number of candidate
query completions that are used as additional trie context. It is observed that the
use of a single top-ranked candidate query results in worse performance, which may
be attributed to an inadequate context. Furthermore, incorporating more than three
top-ranked queries also results in poor performance. This can be due to two possible
factors: (1) the model may become overwhelmed and unable to effectively distinguish
relevant information from the trie context in the presence of too many suggestions in
the input, or (2) the trie context may become too long, hindering the model’s ability
to effectively utilize session signals. Overall, Trie-NLG with top-3 trie candidate
completions (i.e., m = 3) in the input performs the best. We observe similar trends
for both AOL and Bing datasets.

4.6.4 Trie Completion Retention Analysis

Further, we analyze how many trie candidates (i.e., completions) are generated as
completions by the proposed Trie-NLG model, and what position they appear in.
For simplicity, we only consider up to 3 candidate queries and seen test datasets. In
the ideal scenario, the best performing model should retain good candidate queries of
MPCMain into the recommended completion list as well as generate new completions.
Table 4.8 shows that ∼19% and ∼43% examples do not retain any completions for
Bing and AOL datasets, respectively. At the same time, ∼23% of the Bing examples
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retain all the input candidate queries. For the AOL dataset, only 3% of examples have
all the input candidates; this value is very low because MPCMain is created with only
Bing historical search log but used for generating completions for AOL prefixes. So
the trie-recommended completions may not be very relevant and hence not considered
by Trie-NLG for the AOL dataset.

Tables 4.9 and 4.10 provide the position distribution of each trie candidate in the
Trie-NLG output for Bing and AOL datasets respectively. In more than 40% of
examples, the top-ranked candidate query from the trie doesn’t appear in the final
generated output. On the other hand, for 37.6% examples, the top trie candidate is
also the top suggestion from Trie-NLG for the Bing dataset. This also indicates
that the model does not blindly copy the trie candidates as outputs. Instead, it learns
to determine the candidate’s goodness or fit for the specific input and performs the
generation accordingly. Similar trends have been observed for AOL.

t 0 1 2 3
Bing Seen Test Dataset 19.0% 26.4% 30.5% 23.6%
AOL Seen Test Dataset 43.1% 36.1% 17.2% 3.2%

Table 4.8: Number of examples where t trie suggestions were retained in the Trie-
NLG generated completions for Seen Test Datasets.

Rank↓/Pos→ 1 2 3 4 5 6 7 8 None
1 37.60 10.17 3.92 2.10 1.43 1.15 0.94 0.97 41.69
2 18.50 19.51 7.86 3.81 2.45 1.81 1.53 1.511 41.69
3 9.98 12.50 11.82 7.04 4.49 2.74 1.88 1.67 47.83

Table 4.9: Percentage of times the candidate suggestion from trie was copied to [1-
8]th positions (‘Pos’) as output by Trie-NLG for Bing Seen Test Dataset. ‘None’
indicates the candidate suggestion was not a part of Trie-NLG output. Results
are shown for Seen Test Data when m=3. ‘Rank’ indicates the rank of candidate
suggestion from trie.

4.6.5 Runtime Analysis

Table 4.11 shows inference (generation) times for the three models on an A100 Nvidia
GPU. Trie lookups are very cheap compared to BART-based suggestion generation.
Hence, our method Trie-NLG has almost similar runtimes compared to a standard
BART model.
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Rank↓/Pos→ 1 2 3 4 5 6 7 8 None
1 25.92 6.81 3.43 2.22 1.57 1.23 1.03 1.12 56.62
2 7.41 5.47 3.26 2.23 1.65 1.29 1.11 1.11 56.62
3 3.97 3.46 2.53 1.97 1.54 1.21 1.04 1.01 83.24

Table 4.10: Percentage of times the candidate suggestion from trie was copied to
[1-8]th positions (‘Pos’) as output by Trie-NLG for AOL Seen Test Dataset. ‘None’
indicates the candidate suggestion was not a part of Trie-NLG output. Results
are shown for Seen Test Data when m=3. ‘Rank’ indicates the rank of candidate
suggestion from trie.

Models Bing Test Dataset AOL Test Dataset
Seen Unseen Total Seen Unseen Total

BART 11.25 11.75 11.29 11.69 12.83 11.82
BART+ MPCMain 12.28 12.16 12.27 12.17 13.05 12.27
TRIE-NLG 12.34 12.25 12.34 12.29 13.20 12.40

Table 4.11: Runtime of different test dataset splits. Values are in millisec-
onds(ms)/record for 8 auto-complete generations.

4.6.6 Case Studies

Fig. 4.3 shows two examples of suggestions for a short-seen prefix and an unseen prefix
respectively. In the first example, the prefix ‘p’ is very short and MPCMain is unable to
understand the context and recommends more general/popular completions. Whereas
the proposed Trie-NLG model learned the personalized context and recommended
correct and more relevant completions. The model also considers recommendations
from MPCMain as additional context. For instance, ‘pogo official site’ is present in
MPCMain and recommended by Trie-NLG, although there is no relevant context in
the session. In Example-2, there is no query recommendation from MPCMain for the
unseen prefix, but MPCSynth has one recommendation and that acts as additional
context for Trie-NLG. Trie-NLG generates more relevant completions and the
top-ranked completion is correct. In summary, we can conclude that the additional
trie context is useful for the generative model and helps Trie-NLG to generate more
accurate and relevant query completions.

4.7 Conclusion
We proposed Trie-NLG model for personalized QAC. It is based on context aug-
mentation in the NLG model where the additional context is obtained from the main
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Example-1: Seen Short Prefix  Example-2: Unseen Prefix 

Session: kysportsradio || kysportsradio || cincinnati reds ||
cincinnati reds || espn sports || espn sports || ebth ||
ebth.com  || ebth.com || cnn news || cnn news || politico
news
Prefix: p
Correct Query: politico

Session: hurricane resistant || hurricane lines || houston
crap ||  houston crap plan || hurricane climate 
Prefix: houston climate actio
Correct Query: houston climate action plan

Completions (MPCMain):
1. pinterest
2. paypal
3. pittsburgh penguins
4. pandora
5. prime video
6. paypal login account
7. pennlive
8. pogo official site

Completions (TRIE-NLG):
1. politico
2. profootballtalk
3. politico news
4. pittsburgh pirates
5. pogo official site
6. page tour
7. philadelphia inquirer
8. pennlive

Completions(MPCMain):
     None

Completions(MPCSynth):
1. houston climate  
    action policy

Completions (TRIE-NLG):
1. houston climate action plan 
2. houston climate action policy
3. houston climate action play
4. houston climate plan action
5. houston climate action plan tx
6. houston climate action program
7. houston climate action plan plan
8. houstonclimate action plan

Figure 4.3: Sample generations from Trie-NLG model. Here we consider two exam-
ples: a seen short prefix and an unseen prefix.

trie or the synthetic trie. To the best of our knowledge, this is the first study to
use the trie context in NLG models for QAC. We primarily focused on solving the
problem of short and unseen prefixes. The model was evaluated on a prepared AOL
QAC dataset and a real prefix-to-click QAC dataset from Bing. The proposed model
outperformed all the baselines while specifically improving the performance for short
and unseen prefixes.

4.8 Insights, Limitations and Future Work
Insights: The augmentation of the trie context is performed at several positions,
including in the beam search decoding algorithm, in the self-attention of the encoder,
in the self-attention of the decoder, as input to the decoder while using teacher-
forcing, and many more. However, we observed that the model performs best when
the trie context is augmented in the input, as in the Trie-NLG model.
Limitations: The proposed Trie-NLG model operates in a two-step process, com-
prising the extraction of auto-completions from a trie and augmentation in the NLG
model. As a consequence of this approach, the model exhibits slightly higher latency
compared to the standard NLG model due to trie lookup. However, the trie lookup
time is notably low. It is crucial to highlight that the proposed model is built upon
a pre-trained NLG model (BART), which renders it susceptible to displaying unex-
pected outcomes inherited from the pre-training phase [GGS+20]. Such outcomes
may include toxicity, bias, hallucination, misinformation, and other similar issues.
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Future Work: Not all session queries are relevant to the current user prefix. Irrel-
evant session queries lead to noisy training data. In the future, we plan to explore
modeling techniques that can select and encode only the relevant queries as personal-
ized contexts for Trie-NLG. Additionally, we will explore on-the-fly models instead
of two-step as in Trie-NLG. Exploring more novel RAG [LPP+20] modeling, which
can provide better context/completions instead of trie completions to boost the per-
formance, will be an interesting extension of the work. Finally, we will explore a
transfer learning approach to extend this to a multilingual QAC system.
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Chapter 5

Mitigating Catastrophic Forgetting
to Enable Zero-Shot Cross-Lingual
Generation

5.1 Introduction
In the first part of the thesis, our focus was on advancing generative NLP by gen-
erating diverse text (Chapter 3) and mitigating issues related to limited context
(Chapter 4). We made efforts to enhance NLG modeling for two specific applications
(distractor generation and PQAC), employing traditional LSTM-based and modern
large language model (LLM)-based approaches, respectively. In the second part of the
thesis (i.e., the next three chapters), we delve into novel modeling frameworks to ex-
tend these technologies to limited data scenarios, a common occurrence in low-resource
languages (LRLs). Here, we focus on NLG modeling in zero-shot and few-shot set-
tings, which enable scalability. The next three chapters can be read independently.
We continue to explore LLM-oriented modeling.

The deep learning-based modeling for NLP heavily relies on a large amount of la-
beled training data. Such labeled data is publicly available for high-resource languages
(HRLs), i.e., English. However, challenges arise when modeling with limited labeled
data, which is often the case for LRLs like Hindi, Japanese, and others. The scarcity
of labeled data for LRLs is more pronounced for NLG tasks, as task-specific data
availability for LRLs is more rare. Manually annotating large task-specific datasets is
a time-consuming, expensive, and uninteresting process, which hampers model devel-
opment and product deployment for LRLs. One promising direction is cross-lingual
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modeling [HRS+20, CKG+20, LLG+20a], which involves training a model on a large
high-resource task-specific language (generally English) and zero-shot or few-shot in-
ference in LRLs. This approach leverages supervision transfer from HRLs to LRLs
and enables technology for unseen LRLs (zero-shot) or LRLs with limited training
examples (few-shot). While cross-lingual modeling has gained attention for natural
language understanding (NLU) tasks, the field of cross-lingual generation remains
relatively under-explored due to several additional challenges.

To understand these challenges, let’s consider a concrete cross-lingual abstractive
text summarization (ATS) task. It is a task of generating a grammatically coher-
ent, semantically correct, and abstractive summary given an input article. A typical
zero-shot cross-lingual generation model involves two main steps: (1) Training with
HRLs: Train (fine-tune) a model (LLM) using a large labeled dataset from HRLs,
typically English. For instance, training with an English ATS dataset and (2) Zero-
shot generation in LRLs: Utilize the trained model for zero-shot generation in target
LRLs. For instance, when given input in an LRL (e.g., a Hindi article), the model
generates a summary in the same LRL (Hindi summary). Unlike NLU tasks, in
the zero-shot cross-lingual generation, the text needs to be generated in the target
LRL, which generally suffers from Catastrophic Forgetting1 (CF; [VdVT19]) problem.
Due to CF, the model generates text in fine-tuned HRL (e.g., English) or produces
code-mixed output with both fine-tuned HRL and target LRL. Towards mitigating
the catastrophic forgetting problem and improving cross-lingual supervision transfer,
we propose a novel unsupervised modeling framework called ZmBART [MDKD21b].
This framework is designed to facilitate well-formed zero-shot generation for LRLs.

We carefully selected four challenging NLG tasks, i.e., news headline genera-
tion (NHG), question generation (QG), abstractive text summarization (ATS), and
distractor generation (DG) to evaluate the proposed ZmBART model performance.
NHG and ATS require understanding input passage to generate meaningful headlines
and summaries, respectively. QG task should contextualize information from a pas-
sage and answer to generate high-quality questions. Distractor generation is the task
of generating incorrect options from reading comprehension MCQ. It is challenging
because generated distractors should be in the question’s context but not semantically
equivalent to the answer. Further, we consider two LRLs, i.e., Hindi and Japanese,
from two different language families. English is selected as the HRL from which the
learned supervision would be transferred to the LRLs. All three selected languages
are different in their syntactic structures and typologically diverse. This will test

1also known as Accidental Translation [XCR+21] or off-target problem
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Input Article

   Headline   
 (ground truth)

       क�ीर के पुलवामा म� मुठभेड़, एक आतंकी ढेर।

 Headline (zero-
shot generation)

       पुलवामा म� जारी मुठभेड़ म� एक आतंकवादी ढेर।

दि�ण क�ीर के पुलवामा िजले म� सुर�ा बलो ंके साथ जारी मुठभेड़ म� शु�वार को
एक आतंकवादी ढेर हो गया। पुिलस के एक �व�ा ने बताया िक इस मुठभेड़ म� एक आतंकवादी
मारा गया है। यह मुठभेड़ अभी जारी है। �व�ा ने बताया िक पुलवामा के च�गाम म� आज सुबह
सुर�ा बलो ंऔर िछपे �ए आतंकवािदयो ंके बीच मुठभेड़ शु� हो गई। माना जा रहा है िक गांव म�
ल�र-ए-तैयबा के दो आतंकवादी िछपे �ए ह�।
(Translation: A militant was killed on Friday in an ongoing encounter with security forces in the Pulwama district of eroded
Kashmir. A police spokesman said a militant was killed in the encounter. The encounter is still going on, the spokesperson
said, adding that an encounter between security forces and hidden militants started this morning at Chandgam in
Pulwama. Two LeT militants are believed to be hiding in the village.)

 (Translation: Encounter in Pulwama, Kashmir, a terrorist killed)

 (Translation:  A terrorist killed in ongoing encounter in Pulwama)

Figure 5.1: Sample zero-shot news headline generation with ZmBART in the Hindi
language

the effectiveness of the proposed model. As there is no established publicly available
dataset for DG in Hindi, we also create a new high-quality DG dataset for Hindi
called HiDG2.

The ZmBART is developed on top of mBART [LGG+20c], a multilingual pre-
trained language model trained with 25 languages with denoising objectives (masking
and sentence permutation). We perform adaptive unsupervised training by further
pre-training mBART with a novel auxiliary task. Then, this trained model is fine-
tuned on large task-specific supervised data in English and evaluated directly with
Hindi and Japanese languages in zero and few-shot settings. The auxiliary task
is critical to mitigate CF and improve the cross-lingual supervision transfer. This
framework can be directly applied to multiple cross-lingual generation tasks without
modifying any hyper-parameters values. Fig. 5.1 shows a sample zero-shot output
generation for the NHG task with the ZmBART.

Our main contributions through this work can be summarized as follows:

1. We propose a novel zero-shot cross-lingual transfer and generation framework
called ZmBART, which does not require parallel data/pseudo-parallel and with-
out back-translated data. It is scalable to multiple NLG tasks without even
modifications in hyper-parameter values.

2. The ZmBART is powered by adaptive pre-training with a navel auxiliary task
as a learning objective. This helps to mitigate catastrophic forgetting problems
and generates well-formed zero-shot text in target LRLs.

2HiDG dataset download link: https://github.com/kaushal0494/ZmBART
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3. We demonstrate the effectiveness of ZmBART on four cross-lingual generation
tasks across three typologically diverse languages.

4. We have created HiDG, a high-quality distractor generation dataset for the
Hindi language.

5.2 Related Work
Early works on cross-lingual generation rely on machine translation (MT). Wan et
al. [WLX10a] leveraged the MT pipeline for cross-language ATS. They first translate
the non-English test instances into English. This translated text is fed through the
trained, supervised model (with document ATS data in English) to generate English
summaries. Finally, these summaries are translated back to the target language. Shen
et al. [SCY+18] and Duan et al. [DYZ+19] used MT systems to generate pseudo-
training data for cross-lingual ATS and NHG, respectively. However, these MT-based
models are not suitable for LRLs as they do not share parameters across languages,
making them not scalable. Furthermore, translations are not perfect, leading to the
propagation of translation errors.

The ZmBART work was carried out in the time span when PLMs were emerging;
there have been limited efforts in the direction of supervision transfer from HRL(s) to
LRL(s) for language generation tasks. Kumar et al. [KJM+19a] used back-translation
(needs MT system) and annotated supervised data for cross-lingual question genera-
tion. Chi et al. [CDW+20a] used parallel data to train a sequence-to-sequence model
for zero-shot cross-lingual abstractive text summarization and question generation.
Lewis et al. [LGG+20b] consider the task of ATS where small annotated data is
available in multiple languages. The model is first pre-trained with mono-lingual
paragraphs. Then, this model is fine-tuned with the small ATS dataset of all the
languages except the test language. The final model is used for zero-shot ATS in test
languages. These fine-tuning and testing steps are repeated for different languages.
This is similar to the k-fold cross-validation setup. This approach needs annotated
data in multiple languages and other existing supervision transfer methods require
parallel data for cross-lingual tasks. Either they use available parallel corpora directly
or translate/ back-translate data as pseudo-parallel data. Both these approaches pose
significant challenges, as parallel data for multiple languages is difficult to obtain. MT
systems (to obtain pseudo-parallel data) are far from perfect or unavailable for many
LRLs.
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Unlike the previous approaches, we did not use any parallel data or back-translation
in our proposed framework. We did not pre-train any model from scratch. Instead, we
leveraged the existing pre-trained multilingual language model, i.e., mBART. We in-
cluded four challenging generation tasks across three typologically diverse languages.
We did not modify any hyper-parameters across the tasks and languages. All these
considerations make the framework simple and easy to use. Further, it enables adding
different languages and NLG tasks in the proposed framework as a simple extension
exercise.

5.3 Methodology
The proposed ZmBART model has two-fold objectives: (i) Mitigating the effect of
catastrophic forging and well-formed zero-shot generation in LRLs and (ii) Improving
the cross-lingual transfer singles from HRLs to LRLs for model performance boost.
To achieve these objectives, three novel modeling aspects are adapted in ZmBART.
(1) We perform an adaptive further pre-training of mBART with a novel auxiliary
task. The auxiliary task is designed in such a way that the objective function of the
auxiliary task is close to fine-tuning tasks and only utilizes the mono-lingual data
from the considered languages. (2) we freeze the model components while fine-tuning
with task-specific HRLs which contextualize previous learning and help to mitigate
the CF issue. (3) We modified the mBART language identifier tag as <fxx><2xx>
in the input data instance where <xx> indicates the ISO-2 language code. Given an
input sentence and the language tag, the model encodes the sentence in multi-lingual
space. By conditioning on the encoded representation and language tag the decoder
generates output text in the target language. The proposed model is developed on
top of the base pre-trained mBART [LGG+20c] model and does inference in zero-
shot and few-shot settings. Figure 5.2 shows an overview of the proposed ZmBART
framework. Next, we will begin by providing a brief overview of the mBART model.
Following that, we will delve into the three modeling components, and finally, we will
cover the training and generation details.

5.3.1 Background: Multilingual BART (mBART)

Multilingual BART (mBART) [LGG+20c] is an extension of the BARTmodel [LLG+20b]
designed to work with multiple languages. It is a transformer-based sequence-to-
sequence (aka. encoder-decoder) pre-trained model. The model is trained on mono-
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mBART: Pre-trained
Language Model

Supervised Training: English News Headline Data

Zero-shot and Few-short Generation in LRLs

Champak's daughter Tarika has always harbored a dream to travel and study abroad. Though
she is poor in studies, Champak is strongly supportive of her dream, and, with some effort,
she secures a high rank in her final school examinations, enough for her to secure a
scholarship from Truford University, which has partnered with her school.

यह कहानी िद�ी म� रहने वाले एक �ापारी राज ब�ा की कहानी है, जो िद�ी म� शादी म� उपयोग होने वाले
कपड़ो ंका �ापार करते रहता है। वह अमीर रहता है, लेिकन अ�ी तरह अं�ेजी नही ंजानते रहता है और
उसकी प�ी दोनो ंसरकारी िव�ालय म� िह�ी मा�म म� पढ़ाई िकए रहते ह�। उसकी प�ी की इ�ा रहती है िक
उसकी बेटी िपया को िकसी बड़े िव�ालय म� पढ़ाये और इस कारण वे लोग उसे िद�ी के पाँच सबसे बड़े
िव�ालयो ंम� से िकसी एक म� उसकी पढ़ाई करवाना चाहते थे। 

メロスは怒おこった。悪わるい王様おうさまを許ゆるせないと思おもいました。メロスは難むずかしいことがわかりません。メロスは村むらで
楽たのしく生活せいかつをしていました。しかし、メロスは悪わるいことを許ゆるせません。メロスは村むらからシクラスという街まちに来き
ました。メロスにはお父とうさんもお母かあさんもいません。奥おくさんもいません。１６じゅうろく歳さいの妹いもうとと二人ふたりで生活
せいかつをしています。妹いもうとはもうすぐ結婚けっこんします。メロスは結婚式けっこんしきの用よう意いのために買かい物ものをしに街
まちに来きたのです。街まちを歩あるいていると、メロスは街まちがおかしいと思おもいました。前まえに来きた時ときより、街まちがとても
静しずかなのです。そこで、メロスは街まちの人ひとに聞ききました。「なぜ街まちが静しずかなのですか？」

Champak's daughter Tarika has always harbored
a dream to travel and study abroad. .

वह अमीर रहता है, लेिकन अ�ी तरह अं�ेजी नही ंजानते
रहता है और उसकी प�ी दोनो ंसरकारी िव�ालय म� िह�ी
मा�म म� पढ़ाई िकए रहते ह�। 

メロスは怒おこった。悪わるい王様おうさまを許ゆるせないと思おもいまし
た。前まえに来きた時ときより、街まちがとても静しずかなのです。そこ
で、メロスは街まちの人ひとに聞ききました。「なぜ街まちが静しずかなの
ですか？」

Input Passage Rand-Summary

 Supervised Training: English Abstractive Text Summarization Data

Supervised Training: English Question Generation Data

Supervised Training: English Distractor Generation Data

Adaptive Training: Unsupervised Auxiliary Task

Figure 5.2: Overview of ZmBART developed on top of mBART [LGG+20c] model

lingual data from 25 languages obtained from the Wikipedia Common Crawl corpus
using the BART language model objective. Specifically, the training data is a con-
catenation of data from K languages, denoted as D = D1,D2, . . . ,DK , where Di

represents a collection of monolingual documents in language i. They introduced two
types of noise to corrupt the text: (1) random token span masking and (2) sentence
order permutation. mBART is trained as a denoising autoencoder. During training,
the task is to predict text X from its corrupted version g(X), where g represents the
noise function. The objective is to maximize the following function:

Lθ =
∑

Di∈D

∑

x∈Di

logP (x|g(x); θ), (5.1)

Here, x is a data instance in language i, θ is model parameters, and the probability
distribution P is defined by the sequence-to-sequence model. mBART has achieved
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state-of-the-art results in a sentence and document-level machine translation tasks.
Further details about the mBART model can be found in [LGG+20c].

5.3.2 Unsupervised Auxiliary Task

Although the mBART pre-trained model encodes a common multilingual latent rep-
resentation space, it can not be used directly for cross-lingual generation. Because
the model is jointly trained on denoising objectives that do not directly follow auto-
regressive decoding, thereby causing a mismatch between pre-training and fine-tuning
objectives [CDW+20a, DCLT19]. To overcome this problem, an unsupervised auxil-
iary task is introduced. We design the auxiliary task with the following desiderata in
mind: (1) It should only utilize monolingual data from considered languages, (2) aid
in mitigating CF/AT issues, (3) It should enhance the latent representation space for
considered languages, and (4) maintain close proximity between the auxiliary task
objective and downstream NLG tasks objective.

The downstream NLG tasks considered in this work are expected to retain/-
generate words from the input. Motivated by this property, we propose a novel
auxiliary task that encodes the input and utilizes this encoded representation to gen-
erate partial input as output in an auto-regressive manner. Specifically, the auxiliary
task is designed as: Given an input Passage, generate a few random sentences
(called Rand-Summary) from the passage. It is language-independent and scalable.
Through empirical analyses, we found that randomly selecting 20% of the sentences
from the input passage as a target gives the best results. Furthermore, we constrained
the input length to be between 5 and 25 sentences and the output comprising 1 to 5
random sentences from the passage. We collected an equal proportion of small mono-
lingual datasets (∼11K examples from each language) from all languages considered.
Table 5.1 outlines the data preparation steps for the auxiliary task.
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1. Generate a random number k ∈ {5, 25}. k denotes the size of the input passage.

2. Passage: Append k continuous sentences, starting from a random index of
monolingual corpus Di of the ith language.

3. Rand-Summary: Randomly select 20% of the sentences from the passage.

4. Repeat steps 1 to 3 for all p languages.

5. Repeat steps 1 to 4 for N times to collect Np < passage, rand-summary >

pairs.

Table 5.1: Data preparation steps for the Auxiliary Task

The auxiliary task is an additional pre-training step (aka. adaptive training) for better
warm-start to downstream auto-regressive NLG tasks - although the downstream
tasks (Distractor/Question/Summary/Headline generation) can be different from the
auxiliary task. Additionally, this step allows the model to have a closer look at the
languages under consideration and enrich/adjust the representations and parameters
accordingly.

5.3.3 Freezing Model Components

During supervised training, while fine-tuning ZmBART with task-specific HRL data,
we freeze all word embeddings and the parameters of the decoder layers3. This
approach is adapted to ensure that ZmBART’s previous learning (multilingual pe-
training and adaptive training) and latent space are not overwritten during supervised
training.

5.3.4 Adding Language Tag

We have modified the mBART model’s language tag for the cross-lingual generation
framework. We concatenate <fxx><2xx> tag in the source side of the training data,
where <xx> is the ISO-2 language code. The language tag acts as a flag to trigger
the zero-shot generation in target <xx> languages.
The ablation study (Section 5.6.3) provides evidence that all three components are
necessary to mitigate CF/AT problems effectively and enable well-formed zero-shot
text generation in LRLs.

3We have experimented with freezing different model components - proposed setup works best.
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5.3.5 Model Training and Generation

We consider four tasks: Question Generation (QG), News Headline Generation
(NHG), Abstractive Text Summarization (ATS), and Distractor Generation (DG),
in three typologically diverse languages. The HRL is English (en), and the LRLs
are Hindi (hi) and Japanese (ja). First, the mBART model undergoes adaptive pre-
training with the auxiliary task to obtain the ZmBART model. Then, for each NLG
task, the ZmBART model is fine-tuned using task-specific HRL data (English). Dur-
ing task-specific fine-tuning, the word embeddings and all the decoder parameters
are frozen. This allows the model to enable cross-lingual transfer (i.e., supervision
transfer from HRL) and contextualize previous pre-training and auxiliary fine-tuning.
The final model is used for zero-shot and few-shot generation (with 1000 examples)
in LRLs. The language tag is added to the source input during all fine-tuning and
generation steps. The mBART model, fine-tuned with the proposed auxiliary task
and HRL of downstream NLG task, is referred to as the ZmBART model.

5.4 Experimental Setup
With the ZmBART, we aim to address the following research questions: (1) Does the
ZmBART successfully mitigate the CF/AT problem? (2) How does the ZmBART
perform compared to existing literature baselines? (3) Does the model’s performance
persist across different tasks and LRLs? and (4) Does the model’s performance im-
prove with few-shot training? Considering these questions, we have designed the
following experimental setup:

5.4.1 Baselines

To compare the ZmBART model performance, we have developed three strong base-
lines. Details of these baselines are mentioned below:

• MTPipeline: We fine-tune mBART on task-specific English data. Then, the
input of non-English test data is first translated into English and passed to the
fine-tuned model to generate the output. Finally, the output is translated back
to the non-English language. Google Translator is used for translations.

• MonoMask: This is similar to the ZmBART model. Here, we use word mask-
ing objective instead of auxiliary task objective. This is inspired by the success
of the BERT model [DCLT18]. Following BERT, we randomly mask 15% words
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from each input sentence. Given marked input passage model has to generate
the correct passage. The aim is to test the effectiveness of the proposed auxiliary
task.

• ParaMask: Drawing inspiration from the [CDW+20a], we have considered
Hindi-English and Japanese-English parallel data in this baseline. For each
data, we concatenated parallel instances together and treated them as mono-
lingual data. This was applied to both data, and the resulting two monolingual
data (corresponding to two parallel data) were merged into a single final data.
Finally, we perform a word masking objective similar to MonoMask baseline
model with final data. Including parallel data provides explicit cross-lingual
supervision transfer and is expected to boost the model performance.

5.4.2 Evaluation Metrics

We employ both automated and human evaluation metrics for performance compar-
ison. Multiple metrics are used in the literature for NLG tasks. Here, we consider
commonly used metrics by the research community. For automatic evaluation, we
used both lexical match metrics (BLEU4 [PRWZ02b] andROUGE5 [Lin04a]) as well
as embedding-based (semantic-based) evaluation metric (BERTScore6 [ZKW+20]).
Specifically, for QG and DG tasks, we employ the BLEU-4 (BL), ROUGE-L (R-L),
and BERTScore (BS) metrics, and for ATS and NHG tasks, we rely on ROUGE-1,
ROUGE-2, and ROUGE-L metrics.
We follow a similar approach for human evaluation as Chi et al. [CDW+20a]. We
sampled 50 generated data points each from QG, ATS and NHG tasks in both Hindi
and Japanese languages. We use three human evaluation metrics: Fluency (Flu),
Relatedness (Rel) and Correctness (Corr). Fluencymeasures how fluent the generated
text is. Relatedness indicates how much the generated outputs are in the context
with input(s), Correctness measures semantics and meaningfulness. For DG, we
use an additional metric called Distractibility that measures the degree of confusion
for generated incorrect options. For the DG task, there can be a large number of
good distractors for a given input; in such a situation, the manual evaluation is
more reliable. We sample large generated outputs (100 generations) for the DG task.
We employed a large pool of evaluators from native Hindi and Japanese speakers to

4https://github.com/mjpost/sacrebleu
5https://github.com/pltrdy/files2rouge
6https://github.com/Tiiiger/bert_score
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evaluate Hindi and Japanese output texts, respectively. We asked each annotator to
rate the generated texts on a scale of 1-5 (1 is very bad and 5 is very good) for all
the metrics. We intentionally selected three models,i.e., outputs from ZmBART and
the two best baselines, to reduce the evaluator’s workload.

5.4.3 Implementation Details

We use mBART as a base multilingual pre-trained model, which is a standard
sequence-to-sequence Transformer architecture with 12 layers (each 16 heads). The
model has a dimension of 1024 (approx 680M parameters). Additional layer-
normalization was used with both the encoder and decoder. We found that FP16
precision stabilized the training. We trained all the models on 4 Nvidia V100 GPUs
(32GB). We use the Adam optimizer (ϵ = 1e−6, β2 = 0.98) and linear learning rate
decay scheduling. The training started with a dropout value of 0.3 and was later
reduced to 0.2 after 20k steps and 0 after 40k steps. The loss function was cross-
entropy label smoothing loss. 2500 warm-up steps and 3e−5 learning rate were used.
The model selection was done based on validation data likelihood. We use beam-
search with beam size 5 in the decoding for all the tasks. We use mBARTCC25 as a
base pre-trained checkpoint.
The above set of hyper-parameters is used for all the downstream NLG tasks as well
as the auxiliary task. We process different batch sizes of input for different tasks. We
use 2048, 3000, 4096, 2048, and 5000 tokens per GPU for ATS, DG, QG, auxiliary, and
NHG tasks. We use shared Byte Pair Encoding (BPE) vocabulary from a sentence-
piece tokenizer of size 250k. We use 34k/1k/1k (train/validation/test) data points
for auxiliary language (approx 11333 from each language). We train the mBART
model with the auxiliary task around 10k steps. Training time for the auxiliary task
is around 2-3 hours. The fine-tuning times for TS, QG, NHG, and DG were around
4-5, 1-2, 1-2, and 2-3 hours. We observe a longer fine-tuning time for ATS because
of long passages. We selected the best model based on loss and perplexity on the
validation datasets. We checked with early-stopping and other checkpoints, which
resulted in poor performance. For English, Hindi and Japanese, we sacreBLEU7,
Indic-NLP8 and Kytea9 tokenizers, respectively.

7https://github.com/mjpost/sacrebleu
8https://anoopkunchukuttan.github.io/indic_nlp_library/
9http://www.phontron.com/kytea/
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5.5 Downstream NLG Tasks and Results
In this section, we present details of downstream NLG tasks, share dataset details,
and highlight the major results and findings. We consider four tasks: Question Gen-
eration (QG), News Headline Generation (NHG), Abstractive Text Summarization
(ATS), and Distractor Generation (DG), in three typologically diverse languages.
The HRL is English (en), and the LRLs are Hindi (hi) and Japanese (ja). Automated
evaluation results are presented in Tables 5.2 and 5.3 for Hindi and Japanese, respec-
tively. Human evaluation results for Hindi and Japanese are presented in Tables 5.4
and 5.5, respectively.

5.5.1 News Headline Generation (NHG)

It is a task of generating grammatically coherent, semantically correct, and abstrac-
tive headline, given a news article. We use 500k/30k/30k (train/validation/test)
English NHG data splits from Gigaword headline generation corpus10. For Hindi and
Japanese, we use 1k/1k/5k splits from Kaggle11 and Iwama et al. [IK19], respectively.
Further, we did manual verification to ensure the quality.
The MonoMask baseline is the best among the others, which shows that mask-
ing and denoising with monolingual data indeed enrich the multilingual latent space
and lead to improved performance. However, ZmBART outperforms the Mono-
Mask model with an absolute difference of 5.22 in the ROUGE-L score, showing the
impressive performance of the ZmBART model. Moreover, MonoMask generates
code-mixed (Hindi-English or Hindi-Japanese) output in the zero-shot setting. Few-
shot training corrects the mistakes of zero-shot models and generates higher-quality
output. Despite having explicit cross-lingual information in ParaMask through par-
allel data, the model performs poorly. One possible reason could be the misalignment
of sentences as they are concatenated in a sequential manner. All the baselines and
the ZmBART model outperform the MTPipeline model, which indicates the im-
portance of auxiliary tasks. These scores correlate with automated scores, validating
ZmBART’s genuine performance gain for the NHG task.

10https://github.com/harvardnlp/sent-summary
11https://www.kaggle.com/disisbig/hindi-text-short-summarization-corpus
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Model News Headline Generation Question Generation Abstractive TS Distractor Generation
R-1 R-2 R-L BL R-L BS R-1 R-2 R-L BL R-L BS

Zero-shot results
MTPipeline 16.61 4.91 15.83 2.6 21.31 71.53 11.15 3.11 10.93 1.6 9.66 67.35
MonoMask 29.32 16.36 27.52 3.9 23.70 73.76 18.25 4.92 16.10 2.8 15.86 72.26
ParaMask 24.02 13.41 23.29 4.3 25.29 73.74 10.47 2.55 12.30 2.9 15.43 72.89
ZmBART 34.94 19.38 32.74 4.4 26.51 74.19 21.27 5.30 17.64 4.1 21.05 73.39

Few-shot results (with 1000 supervised data points)
ZmBART 52.37 35.52 50.50 7.6 34.11 78.29 36.29 14.21 27.22 6.5 26.58 78.27

Table 5.2: Zero-shot and few-shot results for Hindi language

Model News Headline Generation Question Generation Abstractive TS
R-1 R-2 R-L BL R-L BS R-1 R-2 R-L

Zero-shot results
MTPipeline 13.82 0.38 7.92 8.9 26.92 71.93 17.90 3.98 18.46
MonoMask 33.75 8.12 17.78 16.6 34.80 74.01 28.74 9.01 23.63
ParaMask 31.58 6.98 18.95 18.2 36.22 74.99 19.17 4.89 18.22
ZmBART 35.25 9.24 19.92 18.8 38.74 75.91 36.60 15.26 29.85

Few-shot results (with 1000 supervised data points)
ZmBART 47.06 22.36 31.55 30.4 53.98 82.66 41.65 20.33 33.49

Table 5.3: Zero-shot and few-shot results for Japanese language

Model News Headline Generation Question Generation Abstractive TS Distractor Generation
Flu Rel Corr Flu Rel Corr Flu Rel Corr Flu Rel Dist

Annotator set-01
MonoMask 3.86 4.34 3.94 2.66 3.38 3.52 3.56 3.58 3.22 3.61 4.08 2.89
ParaMask 2.54 2.96 2.28 3.1 3.4 3.78 2.26 2.62 1.92 2.42 3.72 3.08
ZmBART 4.14 4.22 4.04 3.24 3.44 3.9 4.02 4.12 3.54 4.12 4.19 3.83

Annotator set-02
MonoMask 3.84 4.18 3.8 3.83 4.63 3.96 3.38 3.96 3.4 3.38 3.00 2.24
ParaMask 2.96 3.02 2.7 3.98 4.70 3.98 2.96 3.16 2.84 2.97 3.11 2.46
ZmBART 4.12 4.38 4.16 3.95 4.80 4.27 4.24 4.52 4.38 3.56 3.18 2.36

Annotator set-03
MonoMask 3.56 3.74 3.78 2.68 3.76 3.32 2.9 3.34 2.9 3.96 3.74 3.12
ParaMask 3.1 3.42 2.91 2.80 3.88 3.56 2.64 2.34 2.46 4.13 3.74 2.94
ZmBART 3.70 3.84 3.76 2.86 4.04 3.76 4.06 3.56 3.56 4.44 4.12 3.12

Table 5.4: Human evaluation results for zero-shot generated outputs in the Hindi
language
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Model News Headline Generation Question Generation Abstractive TS
Flu Rel Corr Flu Rel Corr Flu Rel Corr

Annotator set-01
MonoMask 2.66 2.98 2.50 1.98 3.70 3.18 3.04 3.55 3.44
ParaMask 2.26 2.70 2.04 2.00 3.38 2.82 1.44 2.22 2.20
ZmBART 3.60 4.02 3.50 2.12 3.30 2.94 4.24 3.90 3.90

Annotator set-02
MonoMask 2.1 2.58 1.98 1.24 1.70 1.33 2.56 3.40 2.62
ParaMask 1.58 1.78 1.46 1.46 1.72 1.78 1.00 1.00 1.00
ZmBART 3.78 4.16 3.86 1.26 1.76 1.88 4.04 4.26 3.84

Annotator set-03
MonoMask 2.24 2.72 2.24 2.34 2.46 2.39 2.82 3.18 3.52
ParaMask 1.9 2.14 1.82 2.10 2.66 2.28 1.16 1.84 1.44
ZmBART 2.88 3.22 2.92 2.10 2.70 2.46 3.32 3.52 3.04

Table 5.5: Human evaluation results for zero-shot generated outputs in the Japanese
language

5.5.2 Question Generation (QG)

In the Question Generation task, given an input passage and an answer, the aim
is to generate semantically and syntactically correct questions that can produce the
answer. We use SQuAD 1.1 [RZLL16b] English data for supervised training. SQuAD
is a popular question and answering (Q&A) dataset consisting of 100k+ <passage,
question, answer> tuples. Following [ZNDK18], we split it as 80k/8k/10k training/-
validation/test sets. For Hindi we use 1k/5.5k (train/test) combined from MLQA
[LOR+20a] and TyDiQA-GoldP [CCC+20a] datasets. We use 1k/1k/5k for Japanese
data from Takahashi et al. [TSKK19a]. Hindi and Japanese data are available in
SQuAD data format which maintains consistency in terms of passage size, question,
and different number of answers. For a given passage and question we randomly
sample one answer from the corresponding answer set. We combine the answer and
passage as a single input sequence separated by a special token <s>.
Even without any parallel data, ZmBART consistently outperformed all the base-
lines across all automated evaluation metrics in the zero-shot setting. Regarding
manual evaluations, we observed that zero-shot Hindi question generations received
high scores from the annotators, while the questions generated for the Japanese lan-
guage were considered of lower quality. Upon closer inspection of the generated text,
we noticed that several zero-shot generated questions in both Hindi and Japanese
languages began with English wh-words. This mixing of English code is possible be-
cause these languages are typologically different compared to English. Moreover, the
practice of code-mixing between Hindi and English is becoming increasingly common,
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and annotators generally accept code-mixed Hindi texts. However, such mixing is less
common in Japanese text. Consequently, the annotators assigned lower scores to the
Japanese-generated texts.
We then attempted to understand the reason for the occurrence of wh-words at the
beginning of the Hindi and Japanese generations. In English, interrogative sentences
often begin with wh-words, and the model exposed to these specific characteristics of
English interrogative sentences during the English fine-tuning. In zero-shot settings,
this exposure impacts the output in other languages, resulting in code-mixed sentences
that start with wh-words. However, the model effectively captures the semantics of the
text, as evidenced by the high BERTScore, indicating a strong cross-lingual transfer
of semantic knowledge.

5.5.3 Abstractive Text Summarization (ATS)

In Abstractive Text Summarization, we aim to generate a grammatically coherent,
semantically correct, and abstractive summary given an input document. We use the
WikiLingua [LDCM20b] cross-lingual abstractive summarization dataset containing
data available in 18 languages. Prior splits are not available for this dataset, so we cre-
ated 131k/5k/5k (train/validation/test) splits for English. For Hindi and Japanese,
1k/1k/5k splits were used.
By skimming through data in Hindi, we observe that many input documents consist of
technical instructions on the usage of software/tools. Summarizing these instructions
is challenging. Zero-shot ZmBART performed better as compared to baselines as
shown in human evaluation (Tables 5.4 and 5.5 for Hindi and Japanese, respectively).
The human evaluation results correlate with automated evaluation as shown in Tables
5.2 and 5.3. Takahashi et al. [LDCM20b] reported cross-lingual ATS scores with the
same data for four different languages. They used the supervised training setup. The
R-L scores for the four languages are 34.06, 37.09, 31.67, and 32.33. We obtained few-
shot R-L scores of 27.22 and 33.49 for Hindi and Japanese, respectively. While these
scores are not directly comparable, they provide a rough estimate of the few-shot
performance with the supervised model, which is considered acceptable.

5.5.4 Distractor Generation (DG)

The final task to evaluate the ZmBART’s performance is the Distractor Generation.
It is the task of generating incorrect options (also known as distractors) from reading
comprehension MCQ. The generated distractors should be in the context of the ques-
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tion but should not be semantically equivalent to the answer. Formally, for given
passage, question and answer triplet, generate a long, coherent, and grammatically
correct wrong option. Considering the fact that for a given triplet there can be many
incorrect options that are completely different from each other, the problem is even
more challenging. We use the English DG dataset from Maurya et al. [MD20b] which
consists of approx 135k/17k/17k (train/validation/test) split. We were unable to find
a suitable small training and test dataset in the Japanese language. For the Hindi
language, we created a dataset called HiDG12 of 1k/1k/5k split. Similar to QG, to
create input for ZmBART we concatenate the answer, question and passage in the
same order and separate them with a special token <s>.
To create HiDG, we first extracted <passage, question, answer> triplets from English
SQuAD 1.1 with at least a total of 150 tokens in the triplet. We generate distrac-
tors for these examples using the model proposed by Maurya et al. [MD20b]. The
distractors were translated to Hindi using Google Translator service. The translated
distractors were manually verified or corrected (if necessary) by human annotators.
The evaluation of the task is challenging because (1) There can be more than one
correct distractor. Automated evaluation metrics may not be able to capture this
aspect as only one ground truth distractor is available and (2) It may be possible
that the generated distractor is semantically similar to the answer with high lexical
overlap with reference distractor in those situations lexical match-based metrics are
not suitable. To evaluate the DG task we mainly rely on BERTScore and manual
evaluation. Towards this effort, we consider a higher number of DG samples for
manual evaluation. Automated and human evaluation scores indicate the superiority
of ZmBART over the baseline models for this task.

5.5.5 Overall Results

Here, we will discuss overall performance and major findings:
Performance Comparison with Baselines: The proposed ZmBART model
consistently outperforms all the baseline models across both languages, all tasks,
and all evaluation metrics in the zero-shot setting. The only exception is human
evaluation for the QG task, where the proposed model has competitive performance
with baselines possible due to code-mixed ’wh-words’ generation, as discussed in
Section 5.5.2. In the rest of the setup, the ZmBART successfully mitigates the

12Implementation, dataset, pre-trained checkpoints and ZmBART generated text are available at
https://github.com/kaushal0494/ZmBART
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CF/AT problem and enables well-formed zero-shot text generation.

Performance of Baseline Models: The auxiliary task-based baseline models, i.e.,
MonoMask and ParaMask, outperform the MTPipeline-based model. This
indicates the importance of auxiliary tasks. Furthermore, MonoMask performs
better than ParaMask, showing the effectiveness of auxiliary tasks with monolin-
gual data. The proposed ZmBART model outperforms all the baseline models and
emerges as a state-of-the-art model.

Automated vs. Human Evaluation: All the automated evaluation metrics show
similar trends across the tasks. A similar observation holds for human evaluation
metrics. Moreover, the evaluation with different annotator sets ensures inter-
annotator agreement, except for the QG task. The automated and human evaluation
scores correlate with each other. The proposed ZmBART model outperformed all
the baseline models across both types of evaluations.

Zero-shot vs. Few-shot Performance: The fine-tuning of the ZmBART model
with an additional 1000 examples in a few-shot setting further boosts the model’s
performance. It can be observed that the performance gain is high as compared to
the zero-shot setting. This indicates the adaptability of the ZmBART model with a
small task-specific supervised dataset.

Performance for Hindi vs. Japanese Language: Although the performance
comparison across languages is generally not possible due to different tokenization
schemes (affecting lexical overlap metrics), differences in language representation
(affecting BERTScore metrics), and subjective bias are introduced by human
evaluators (especially when comparing Hindi and Japanese evaluators). However,
the above acceptance score for both languages indicates the ZmBART performs
reasonably well for both languages.

Performance across Different Tasks: Except for human evaluation performance
for the QG task, the proposed model consistently outperformed all tasks. It can
be observed that the zero-shot performance (both human and automated) of DG
is reasonably high, indicating ZmBART’s intelligence in handling challenging tasks
like DG. Furthermore, we have not modified a single parameter of the model across
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tasks, indicating the scalability of the proposed model.

Generalization of ZmBART Model: With these results, we now want to
understand whether the ZmBART is able to generalize across multiple tasks or favors
specific tasks by considering the spurious correlation between auxiliary task and
downstream NLG tasks objectives. Among the tasks considered in this work, we see
that the generation of meaningful summaries/headlines requires understanding/ab-
stracting of input text, which is unlikely to be obtained by repeating sentences from
input passages, as done in the auxiliary task. ZmBART achieves good zero-shot
and few-shot on ATS and NHG over strong baselines. The generated headlines
and summaries were found to be mostly abstractive; they do not contain large
continuous sequences from input text. As described in Sections 5.5.2 and 5.5.4,
Question Generation and Distractor Generation are more challenging tasks and have
objectives vastly different from the auxiliary task’s objective. Even for these tasks,
decent evaluation scores and improvements over the baselines across the considered
LRL indicate that the solutions are not spurious. The incorporation of auxiliary
tasks improves the performance of diverse downstream tasks on real benchmark
datasets and does not favor any specific task or dataset.

To summarize, we have performed experiments for 14 different task-setup combina-
tions involving two LRLs. With four tasks in Hindi and three tasks in Japanese,
and each task in zero-shot and few-shot setup, we provide a detailed comparative
evaluation for the tasks. The tasks are of different natures, and each task offers its
own unique challenge. We critically analyze the performances to show the robustness
and the range of applicability for the proposed ZmBART framework.

5.6 Further Analyses and Discussions
In this section, we provide further analyses, ablation, and experiments to understand
the impact and effect of different modeling components of ZmBART. This will also
highlight the reasoning for the different design choices.

5.6.1 ZmBART Performance for HRL

Table 5.6 presents automated evaluation results of the ZmBART model for high-
resource English. This has been presented in two setups (with and without the
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Task Setup BL R-1 R-2 R-L BS

NHG without Auxiliary Task 15.9 43.15 21.25 40.77 90.13
with Auxiliary Task 15.9 43.22 21.33 40.88 90.13

QG without Auxiliary Task 21.4 52.66 26.63 51.25 92.41
with Auxiliary Task 20.6 53.20 26.53 51.37 92.18

ATS without Auxiliary Task 15.8 39.52 18.00 37.91 90.10
with Auxiliary Task 16.0 40.01 18.11 38.29 90.20

DG without Auxiliary Task 10.0 31.87 14.59 31.30 89.42
with Auxiliary Task 10.3 31.76 14.89 31.18 89.33

Table 5.6: ZmBART model performance for high-resource English language in two
setups: without and with the proposed auxiliary task. Results are reported across all
four tasks with five automated evaluation metrics.

proposed auxiliary task) across all four downstream NLG tasks. The evaluation is
done with English test data in a supervised setting. With this experiment, we aim
to (1) assess the performance of ZmBART for HRL and (2) understand the effect of
auxiliary tasks on ZmBART in the context of HRL. We observe that the performance
of HRL is reasonably high, and there is no significant performance degradation of
ZmBART due to the inclusion of adaptive pre-training steps for HRL. Even the
auxiliary task helps achieve a slight improvement. This concludes that ZmBART can
be adapted as a replacement for the original mBART model, even for HRL and this
single model is effective for both HRL and LRLs.

5.6.2 Effect of Auxiliary Task for LRLs

Table 5.7 presents the zero-shot results of ZmBART for ATS and QG tasks in two
setups: with and without auxiliary task adaptive training. It can be observed that,
without the auxiliary task, lexical match-based scores are poor because the decoder
generates code-mixed outputs due to the CF/AT problem. BERTScore still remains
reasonable without auxiliary tasks, indicating that even the code-mixed generations
are semantically relevant to the reference. However, well-formed generation in the
target LRL is enabled only after the inclusion of the auxiliary task. The auxiliary task
contributes in two ways: it enables zero-shot well-formed generation and improves
cross-lingual transfer from HRL to LRLs. We have similar observations for NHG and
DG tasks.
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Experiment Setup Abstractive TS Question Generation
R-1 R-2 R-3 BL R-L BS
Hindi Language

without Auxiliary Task 4.34 0.10 3.19 0.9 16.64 70.72
with Auxiliary Task 21.27 5.30 17.64 4.4 26.51 74.19

Japanese Language
without Auxiliary Task 6.80 0.11 5.30 6.7 33.07 70.35
with Auxiliary Task 36.60 15.26 29.89 18.8 38.74 75.91

Table 5.7: Zero-shot performance of ZmBART with and without auxiliary task for
Hindi and Japanese languages

Approach Setup BL(hi/ja) R-L(hi/ja) BS(hi/ja)
Freezing Components Freeze word embedding (WE) 2.5/13.6 21.55/31.99 72.02/73.18

Freeze WE + Subset of Encoder & Decoder layers 2.9/15.3 22.62/36.60 72.24/72.98
Freeze WE + Encoder layers 2.2/13.8 19.69/36.91 69.73/72.97
Freeze WE + Decoder layers (ZmBART) 4.4/18.8 26.51/38.74 74.19/75.91

Parameter Regularization Elastic Weight Consolidation (EWC) 2.1/11.6 18.21/29.47 68.36/72.91

Table 5.8: Different approaches to mitigate the catastrophic forgetting problem for
QG task. hi: Hindi, ja: Japanese

5.6.3 Ablation Study for Catastrophic Forgetting Problem

We have experimented with two trending approaches to mitigate the issue of catas-
trophic forgetting, drawing inspiration from continual learning approaches [VdVT19].
These methodologies include (a) Freezing parameters of the model components and
(b) Parameter Regularization. Tables 5.8 and 5.9 present the zero-shot automated
evaluation results with a different combination of two approaches for QG and NHG
tasks, respectively. Notably, our proposed modeling setup (i.e., ZmBART) demon-
strates the best performance. Similar trends have been observed in the case of ATS
and DG tasks.

Approach Setup R-1(hi/ja) R-2(hi/ja) R-L(hi/ja)
Freezing Components Freeze word embedding (WE) 13.02/26.07 05.67/03.96 12.45/17.62

Freeze WE + Subset of Encoder & Decoder layers 14.27/25.72 06.70/03.21 13.76/18.28
Freeze WE + Encoder layers 09.81/22.67 04.10/02.38 09.66/13.68
Freeze WE + Decoder layers (ZmBART) 34.94/35.25 19.38/09.24 32.74/19.92

Parameter Regularization Elastic Weight Consolidation (EWC) 12.01/22.16 05.43/03.11 11.22/16.31

Table 5.9: Different approaches to mitigate the catastrophic forgetting problem for
NHG task. hi: Hindi, ja: Japanese
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Setup News Headline Generation Question Generation
R-1 R-2 R-3 BL R-L BS

mBART with WD 50.61 34.32 49.01 6.1 31.20 77.01
mBART 51.49 35.04 49.64 7.1 32.96 77.61
ZmBART 51.81 35.04 50.07 6.9 32.82 77.40
ZmBART without WD 52.37 35.52 50.50 7.9 34.49 78.39

Table 5.10: Few-shot results with different architectural setups for the Hindi language.
WD: word embeddings and all decoder parameters are frozen

5.6.4 Effect of Architecture on Few-shot Training

In this setup, we experiment with few-shot training with mBART (directly fine-tuned
on task-specific supervised English data) and ZmBART (trained with auxiliary task
and fine-tuned with English data). The results are presented in Table 5.10. We
find that ZmBART does better than mBART in corresponding setups. Moreover,
although freezing the decoder layer and word embeddings helps in a zero-shot setting,
it is natural and useful to unfreeze them during few-shot training.

5.6.5 Few-shot Performance vs. Supervised Data Size

Fig. 5.3 shows the trends of few-shot training of ZmBART with respect to supervised
Hindi and Japanese training data for ATS and QG tasks, respectively. We observe
that even with a small number of supervised examples (e.g., 100), the model achieves
a reasonable few-shot performance. The improvement tends to be minimal after
training with 1000 examples. We found that the different tasks exhibit similar trends.
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Figure 5.3: Trends of few-shot performance of ZmBART with supervised Hindi and
Japanese data for ATS (left) and QG (right) tasks.
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5.7 Conclusion
In this paper, we propose a novel unsupervised framework, ZmBART, to address the
issue of catastrophic forgetting and enhance cross-lingual transfer. The framework
transfers supervision from HRL to LRLs, enabling well-formed zero-shot generation
in LRLs without the need for parallel or pseudo-parallel/back-translated data. Zm-
BART is directly applied to multiple downstream NLG tasks and LRLs without any
modification of hyper-parameters. The model incorporates a carefully designed auxil-
iary task to improve the multilingual embedding space and facilitates a warm-up start
for well-formed zero-shot generation. We conducted experiments in three languages
across 18 task setups: four supervised tasks in English, four tasks in Hindi (each
with zero-shot and few-shot settings), and three tasks in Japanese (each with zero-
shot and few-shot approaches). With the exception of zero-shot question generation
tasks, for all other tasks involving LRLs, the proposed model consistently generated
high-quality results, as validated by automated and manual evaluation.

5.8 Insights, Limitations and Future Work
Insights: As the auxiliary task is similar to NHG or ATS tasks, it may appear that
the auxiliary task is biased towards these tasks, which leads to better performance.
However, the model performs equally well for very different tasks like QG and DG
tasks, which nullifies this assumption. We have not modified any single model hyper-
parameter values for different tasks. We also experimented with different objectives
for auxiliary tasks; however, the Rand-Summary objective (as in ZmBART) per-
formed the best. We explored multiple continual learning techniques to mitigate CF;
however, freezing model components work best along with adaptive pre-training and
language tag. We observed that several generated questions in zero-shot start with
English wh-words, and the first word is code-mixed. This is possibly due to English in-
terrogative sentences often introducing wh-words at the beginning, which may not be
the case with Hindi and Japanese. However, the high BERTScore indicates semantic
correctness. Furthermore, such code-mixing in human evaluation is somewhat accept-
able with Hindi evaluators; however, it is not acceptable with Japanese evaluators,
resulting in lower human evaluation scores for the QG task for the Japanese lan-
guage. This is concurrent work with the adapter-based models [HGJ+19, PKR+21].
We have experimented with the mBART language model; however, the proposed
model is language model agnostic. This has been validated in the next Chapter.
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Limitations: One limitation of this work is that adapting to a new language may
require retraining the mBART model with the new languages during the adaptive
fine-tuning phase. This aligns with the language model pretraining, as including
more languages may necessitate retraining. However, adapting to a new task does not
require any retraining with the auxiliary task, and no hyperparameter modifications
are needed.
Future Work: In the future, we aim to expand upon this work by incorporating more
LRLs and tasks. We will also investigate alternative auxiliary tasks to improve cross-
lingual transfer signals. Specifically, our objectives include adapting to new languages,
either through re-training or building upon the ZmBART. Additionally, two crucial
futures of exploration are (i) Enhancing cross-lingual transfer by leveraging explicit
linguistic features from languages (Chapter 6) and (ii) Enabling language technologies
for LRLs that lack parallel data, possess limited monolingual data, and are absent
from large multilingual language models (Chapter 7).
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Chapter 6

Meta-Learning Approach to
Improve Zero-Shot Cross-Lingual
Transfer and Generation

6.1 Introduction
Zero-shot modeling is a promising research direction to enabling language technology
in low-resource languages (LRLs). However, for natural language generation (NLG)
tasks, this modeling presents its own challenges, including catastrophic forgetting
(CF)/ accidental translation (AT) problems, limited learning data, uneven supervi-
sion transfer and many more. The previous chapter deals with mitigating the CF/AT
problem, and as a side effect, it improves cross-lingual transfer. In this chapter, we ex-
plicitly focus on improving cross-lingual transfer from high resource language (HRL)
to LRLs by considering linguistic information such as language structure and typo-
logical features. We again focus on NLG tasks, zero-shot setting, and a large set of
LRLs. Before delving into the details, let’s take a step back and understand why this
research has a direct social impact and its applicability to a wide audience.
There are more than 7000 known spoken languages across the globe. 95% of the
world’s population does not speak English as their first language and 75% does not
speak English at all1. Most of the languages are LRLs as they do not have adequate
resources for NLP research [JSB+20]. On the other hand, a vast majority of studies
in NLP research are conducted on English data [Ben19]. To democratize the NLP
research for the benefit of the large global community, it is essential to focus on

1https://www.ethnologue.com/statistics
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the non-English languages. However, creating/collecting task-specific annotated data
for all the languages is expensive and time-consuming. Moreover, human languages
are dynamic as new words and domains are added continuously. An alternative
solution is to explore NLP modeling techniques that enable training models with HRL,
like English and transferring supervision to LRLs that have limited or no annotated
data. Recently, there has been promising progress on cross-lingual transfer learning
research [HRS+20, ARY20a], but supervision transfer from HRL to LRLs is non-
uniform, which leads to large performance gaps. Such performance gaps are observed
because the LRLs, which are less similar to HRL, have weak supervision transfer as
models do not account for cultural and linguistic differences in the modeling [LOYS19,
BAN21]. This paper is a step towards bridging this gap via meta-learning and language
clustering.
Meta-learning or learning to learn [BBC90] is a learning paradigm where the model is
trained on diverse tasks and quickly adapts to new tasks given a handful of examples.
It has emerged as a promising technique in Machine Learning [FAL17, KZS+15], Natu-
ral Language Understanding [MHM21, YZJZ20] and Machine Translation [GWC+18].
This work - to the best of our knowledge - is the first attempt to study meta-learning
techniques for cross-lingual natural language generation (XNLG). Particularly, we fo-
cus on zero-shot XNLG for LRLs. Unlike NLU tasks, we observe that zero-shot NLG is
a more challenging setup as the text should be generated in unseen languages (which
suffers from CF/AT problem) and is expected to be grammatically coherent, seman-
tically correct, and fluent. Moreover, the supervision transfer is often non-uniform.
Considering these concerns, we propose a novel modeling framework called Meta-
XNLG [MD22] for cross-lingual transfer and generation with language cluster and
meta-learning. First, we cluster a large set of LRLs into different clusters and obtain
the centroid and non-centroid languages for each cluster. Then, a meta-learning
algorithm is trained with centroid languages and evaluated with non-centroid LRLs
in a zero-shot setting. This modeling effectively mitigates the uneven supervision
transfer and boosts the performance of LRLs that are less similar to HRLs. With this
work, we aim to address the following research problem: Does meta-learning algorithm
trained on typologically diverse languages (as training task) provide language-agnostic
initialization for the zero-shot cross-lingual generation?
Our main contributions with Meta-XNLG are listed below:

100



• We propose Meta-XNLG
2 [MD22], a framework for effective cross-lingual trans-

fer and generation based on the Model-Agnostic Meta-Learning (MAML) and
language clustering. We have utilized the findings from ZmBART.

• We use language clustering to identify a set of meta-training languages. Train-
ing with these languages provides a more uniform cross-lingual transfer to less
similar LRLs (with HRLs) in a zero-shot setting.

• We test Meta-XNLG on two NLG tasks (Abstractive Text Summarization
and Question Generation), using five popular datasets (XL-Sum, Wikilingua,
MLQA, TyDiQA, and XQuAD), across 30 languages. We observe consistent
improvement over strong baselines, including mT5.

6.2 Related Work
In this section, we will discuss two threads of existing literature: (1) cross-lingual
generation and (2) meta-learning for NLP.

6.2.1 Cross-Lingual Generation

Traditional approaches for cross-lingual generation use machine translation (MT) in
the modeling pipeline [WLX10b, ASC+18, DYZ+19]. MT-based approaches have in-
herent problems like scalability, and translations are error-prone. In the case of LRLs,
these errors are more pronounced, hindering usability. Recently, cross-lingual transfer
approaches are gaining attention. These methods use parallel data [CDW+20b] and
small annotated datasets [KJM+19b] in the modeling. Lewis et al. [LGG+20a] fine-
tune a pre-trained model with multiple LRLs and evaluate a single target language in
a zero-shot setting. In the same line of research, we have proposed an unsupervised
approach [MDKD21a] to mitigate CF/AT problem and enable cross-lingual trans-
fer. It has been observed that such cross-lingual transfers are not uniform across
the languages [LCL+19, BAN21]; supervision transfer is ineffective if the LRLs are
less similar to HRL in a zero-shot setting. Unlike these, we propose a meta-learning
approach to enable a more uniform and effective cross-lingual transfer in a zero-shot
setting.

2Code & pre-trained models: https://github.com/kaushal0494/Meta_XNLG
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6.2.2 Meta-Learning for NLP

Recently, meta-learning has been actively applied for many NLP applications
[BJMM20, GHZ+19] including text classification [vdHYMS21], NER [WLW+20],
task-oriented dialogue and QA [MKD+21] and many more. Tarunesh et al. [TKK+21]
propose joint meta-learning approach on multiple languages and tasks from XTREME
benchmark [HRS+20]. Close to our work, [NBBA20] propose a meta-learning ap-
proach for cross-lingual transfer on NLI and QA, both NLU tasks. The authors use
one or two randomly selected languages for meta-training. In contrast, we provide a
systematic approach based on language clustering to identify the right meta-training
languages. Moreover, to the best of our knowledge, ours is the first effort that em-
ploys meta-learning for downstream NLG tasks to improve cross-lingual transfer and
generation.

6.3 Background: Meta-Learning (MAML)
Meta-learning algorithms aim to learn common (meta) structures among multiple
tasks such that the new tasks are adapted quickly given few training instances. It
is also known as few-shot learners. Among several meta-learning algorithms, we
focus on optimization-based algorithms, i.e., Model Agnostic Meta-Learning (MAML)
[FAL17] due to its recent success in multiple NLP and computer vision tasks. MAML
progresses in two phases: meta-training and adaptation. In the meta-training phase,
the model learns a good initialization of parameter values by repeatedly simulating
the learning process with multiple training tasks. In the adaptation phase, these
learned parameters are quickly adapted to new tasks. The underlying constraint is
that all tasks should share some common structure (or come from a task distribution).
The world’s different languages follow this constraint as they come into existence
with a common goal of communication and share some structure. For meta-learning
purposes, we treat each language as a task.
Unlike traditional machine learning, meta-learning has meta-train and meta-test data
splits for meta-training and meta-adaptation (aka. adaptation), respectively. Each
split consists of tasks that are sampled from a distribution p(D) over task datasets
{D1,D2, . . . ,Dn} where Di is associated with ith task Ti. Each Di has support set and
query set Di = {Si,Qi}. Support set and Query set are analogous to train and test
splits of traditional machine learning. We use fθ to denote a neural network model
parameterized by θ.
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Meta-training has two levels of optimization: inner-loop optimization and outer-loop
optimization. In the inner-loop optimization, for each sampled task Ti, the task-
specific model parameters θmi are updated by m iterations of stochastic gradient
descent (SGD) with support set Si. The overall model parameters θ are learned to
optimize the performance of models f

θ
(m)
i

on query sets Qi across datasets p(D) in
the outer-loop optimization. The MAML [FAL17] objective is:

θ∗ = argmin
θ

∑

Di∼p(D)

Li(fθ(m)
i

) (6.1)

where Li(fθ(m)
i

) is the loss obtained on query set for task Ti and f
θ
(m)
i
is obtained after

m iteration of SGD update with Task Ti as:

f
θ
(m)
i

= fθ − α∇θLi(fθ)

In outer-loop optimization, MAML performs MetaUpdate which a batch as:

θ = θ − β∇θ

∑

Di∼p(D)

Li(fθ(m)
i

) (6.2)

Where α is the inner-loop learning rate and β is the meta (outer-loop) learning
rate. In the adaptation phase, the model is initialized with learned optimal meta-
parameters θ∗, which is updated by a few steps of SGD with a support set of the
meta-test dataset (aka. few-shot learning) and directly evaluated on the query set
of the meta-test dataset. Our aim is to perform zero-shot evaluation, so we skip the
adaptation phase and directly evaluate the learned model θ∗ on meta-test datasets.
In our case, we do not have support and query split for meta-test datasets hence, our
proposed model is evaluated with all examples of meta-test datasets.

6.4 Methodology
In the proposed Meta-XNLG framework, we first cluster the available languages and
identify the centroid languages. Then, we train a model with MAML on centroid
languages to obtain an optimal initialization of parameters. Finally, the learned
model is deployed to generate text in the zero-shot setting. Figure-6.1 provides an
overview of the proposed framework. We now deep dive into the details of each
component of the Meta-XNLG framework.

103



B
as

e 
P

re
-t

ra
in

ed
 L

an
gu

ag
e 

M
od

el
 (

P
M

)  

A
da

pt
iv

e 
U

ns
up

er
vi

se
d 

P
re

-t
ra

in
in

g 
(Z

P
M

)

Ta
sk

-s
pe

ci
fic

 E
ng

lis
h 

F
in

e-
tu

ni
ng

 (
E

nZ
P

M
)

Punjabi

Spanish

Punjabi

Support Set Query Set

Spanish Spanish

VietnameseVietnamese
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Figure 6.1: An overview of Meta-XXNLG framework

6.4.1 Language Clustering

The languages can be clustered in two ways: (1) by considering language family
and (2) by exploiting similarities among learned language representations. Further,
learned language representations are obtained using typological features [LML+17]
from linguistic knowledge bases like WALS [DH13] and Glottolog [HFH17] or learned
language tag representations from tasks like machine translation [MNL17]. Recently,
Oncevay et al. [OHB20] fuse typologically learned and task-learned language represen-
tations using singular vector canonical correlation (SVCC) analysis to obtain multi-
view language representation. Further, the authors cluster languages using these rich
multi-view language representations through hierarchical clustering. We utilize this
existing language cluster approach and multi-view language representations in our
proposed framework.
We have considered 30 languages. Most of the languages do not have training re-
sources for downstream NLG tasks and are considered LRLs. We first cluster the
considered languages using the approach proposed by Oncevay et al. [OHB20]. A
sample hierarchical clustering is illustrated as a dendrogram in Fig. 6.2 and final
clustering is shown in Table 6.1. Next, we aim to identify a representative language
(centroid language) for each cluster. Formally, given a cluster C = {L1, L2, . . . Lt},
where each Li is multi-view representation of ith language, the centroid language
L∗ ∈ C is defined as:

L∗ = arg min
Li∈C

∑

Lj∈C
d(Lj, Li). (6.3)

Here d is the cosine distance. Intuitively, we have incorporated the typological
feature-based learned language representation for systematic clustering. This indi-
rectly results in linguistically inspired clustering, where the languages with similar
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Cluster-1(14) Cluster-2(8) Cluster-3(8)
hi,ur,te,tr,ja,fi,ko,gu, es,it,pt,ro, ru,cs,vi,th,
bn,mr,np,ta,pa,sw nl,de,en,fr zh,id,el,ar

Table 6.1: Clustering of considered 30 Languages

Language Clustering Cut Line 

Cluster-1 Cluster-2 Cluster-3

Figure 6.2: Language clustering is based on a multi-view representation [OHB20].
We intentionally showcase more than 30 languages in the clustering, which will prove
useful for scaling the proposed work in the future. The dotted red line represents the
cut-line used to obtain different sets of clusters. Here, we show three clusters that
perform best in our case.

features group into the same cluster. This is an important property the Meta-XNLG

required for generalization (more details on this later).

6.4.2 Meta-XNLG Training

The Meta-XNLG framework consists of five training steps: selection of base pre-trained
model, adaptive unsupervised pre-training, fine-tuning with HRL, meta-training with
LRLs, and meta-adaptation for zero-shot. The motivation and details of each step
are provided below:

1. Selection of Base Pre-trained Model (PM): Our approach is model-
agnostic, therefore any state-of-the-art sequence-to-sequence multilingual pre-
trained language model (PM ; like mBART, mT5, etc.) can be used. We selected
mT5 due to its superiority on many NLP tasks [XCR+21] and large LRL cov-
erage.

2. Adaptive Unsupervised Pre-training (ZPM): Zero-shot cross-lingual
generation often suffers from catastrophic-forgetting/accidental translation
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[XCR+21] and other generation problems. To overcome these issues, we uti-
lized findings from the ZmBART model to develop ZPM (or ZmT5). We will
provide more details on this in Section-6.4.3.

3. Fine-tuning ZPM with HRL (i.e., English): It is often observed that
downstream LRLs applications benefit when supervision is transferred from
HRL [HRS+20]. Following the trend, we fine-tune the ZPM model with the
large task-specific English supervised data and call this model EnZPM (EnZT5)
with parameters θp.

4. Meta-Training with Low-resource Centroid Languages: We use a small
validation dataset of each centroid language as themeta-train dataset. First, the
meta-learner is initialized with the EnZPM parameters. Then, a batch Di from
a centroid language (Ti; aka. tasks) validation dataset is randomly sampled.
Further, Di is equally split into support set Si and query set Qi such that they
are mutually exclusive. m-step gradient update is done in the inner loop using
Si. This is repeated for all the centroid languages (i.e., training tasks). Finally
Meta-Update is done using mean loss computed on Qi as shown in Equation 2.
This is repeated for all the tasks/languages over multiple batches. The batches
are sampled uniformly from all centroid languages. The formal description is
shown in Algorithm-1.

5. Meta-adaptation for Zero-shot Evaluation: The meta-learned model fθ∗
from the previous step can be directly evaluated on the test sets of the target
languages (non-centroid LRLs) in zero-shot setting. The proposed framework
can be easily extended to a few-shot setting. In this setting, the meta-learned
model can be fine-tuned on a small number of validation set examples with
standard supervised learning and evaluated on the test sets of target languages.
In this work, we only focused on zero-shot setting.

In the proposed Meta-XNLG algorithm, the centroid LRLs act as Meta-Training
tasks/languages, and the rest of the non-centroid LRLs as Target (aka. evalua-
tion) tasks/languages. In this setup, the best performing model should hold two
properties, i.e., Intra-cluster Generalization and Inter-cluster Generalization. In the
proposed framework, training with a single centroid language leads to better cross-
lingual transfer capability within the cluster, and using multiple centroid languages
extends the transfer capability to multiple closely-knit clusters and increases cover-
age. In this way, Intra-cluster Generalization and Inter-cluster Generalization are
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Algorithm 1 Meta-XNLG : Meta-Learning Algorithm for Cross-lingual Generation
Require: Task set distribution p(D); pre-trained model EnZPM (P) with parameters θP ;

meta-learner fθ with parameter θ; number of centroid languages c
Require: α, β: step size hyper-parameters
1: Initialize θ ← θP
2: while not done do
3: for each Ti in T T = T1, T2, . . . Tc ∼ p(D) from centroid languages do
4: Initialize θi ← θ
5: Sample a batch Di using the development set of task Ti

6: Split Di to form support set Si and query set Qi

7: for all inner_iter steps m do
8: Compute ∇

θ
(m)
i

LSi
Ti
(P

θ
(m)
i

)

9: Do SGD: θm+1
i = θmi − α∇

θ
(m)
i

LSi
Ti
(P

θ
(m)
i

)

10: end for
11: MetaUpdate: θ = θ − β∇θ

∑b
j=1 L

Qi

Ti
(P

θ
(m)
i

)

12: end for
13: end while
14: Do zero-shot/few-shot learning with meta-learner fθ∗ where θ∗ is learned optimal pa-

rameters of meta-learner.

achieved. However, there is a trade-off between the number of clusters (the number
of meta-training languages) and generalization. If there is a single cluster (a single
meta-training language), then the model tries to over-generalize for different typolog-
ical structures and fails in the attempt. On the other extreme, if there are too many
centroid languages (many typologically diverse structures in meta-training), then the
learning possibly gets distracted. In both cases, the model will be unable to learn
a reasonable structure (the required generalization) and perform poorly. Section-
6.6.2 consists of discussions and empirical evidence. Our experiments suggest that
three clusters across considered languages provide the best performance. These three
clusters are always fixed irrespective of the datasets and underlying tasks. The com-
position of the clusters (with three clusters) is shown in Table-6.1. See Figure-6.2 for
more details on the clustering.

6.4.3 Avoiding Catastrophic-Forgetting (CF)/Accidental
Translation (AT) Problem:

It has been observed that popular pre-trained models in well-formed generations
for unseen low-resource (zero-shot) languages. Broadly, they suffer from Accidental
Translation (AT), where the model generates the whole/part of the output in the
fine-tuning language [XCR+21]. This happens when the model forgets the learning
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obtained before fine-tuning. This is analogous to the Catastrophic-Forgetting prob-
lem [CDW+20b] in multi-task setup, where the model forgets the learning about the
previous task. For language generation, this also leads to problems like improper
predictions, structural and normalization errors, etc., as the different languages dif-
fer in morphology, phonology, subject-verb-object ordering, etc. To mitigate/reduce
these problems, we utilize the findings from ZmBART [MDKD21a], and propose the
following solution in Meta-XNLG framework.

• Adding Language Tag: We concatenate <fxx> <2xx> where xx is language
code as per ISO 693-2 standard.

• Adaptive Unsupervised Pre-training: Further train the base pre-trained
model PM with small monolingual data from all considered languages and
Rand-Summary objective.

• Freezing model Components : One of the key approaches to mitigate the
CF problem is freezing model parameters. Inspired by ZmBART, freezing all
token embeddings and the decoder parameters of the model works best. We
adapted these findings to HRL fine-tuning and meta-training steps.

We observed that the above settings work better to mitigate (or reduce) the CF/AT
problems.

6.5 Experiment Setup
We investigate Meta-XNLG’s performance on two downstream NLG tasks, five public
datasets, and 30 languages. mT5 pre-trained model [XCR+21] is used as the base
model. The model performance is compared with two strong baselines in a zero-shot
setting.

6.5.1 Tasks and Datasets

Abstractive Text Summarization (ATS):

ATS is the task of generating grammatically coherent, semantically correct, and ab-
stractive summary given an input document. We use two publicly available datasets:
XL-Sum [HBI+21] and Wikilingua [LDCM20a].
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• XL-Sum is a large comprehensive dataset where article-summary pairs are
extracted from BBC and annotated by professional annotators. It covers 44
languages including very low-resource languages like Nepali and Swahili. Due
to computational limitations, we consider only 23 languages.

• Wikilingua is a large-scale dataset covering 18 languages. Article and sum-
mary pairs are extracted from WikiHow3. It is how-to guides on diverse topics
written by human annotators for software and tools. We consider all 18 lan-
guages in our experiments.

6.5.2 Question Generation (QG):

In QG, given an input passage and an answer, it aims to generate semantically and
syntactically correct questions that can produce the answer. We use three publicly
available multilingual question and answering (QA) datasets: MLQA [LOR+20b],
TyDiQA [CCC+20b], and XQuAD [ARY20a]. Each instance is a triplet of <passage,
question, answer>. We concatenated answer and passage with delimiter <s> in the
same order as input for models.

• MLQA is a multi-way parallel extractive QA evaluation dataset available in
7 languages. Authors automatically extracted paragraphs from Wikipedia ar-
ticles in multiple languages that have the same or similar meanings. Authors
crowd-sourced questions in English and translated them into target languages
by professional translators. As our framework is based on supervision trans-
fer, we only consider the evaluation data instance where input and target text
languages are the same. In this way we have seven datasets for seven languages.

• XQuAD dataset is translated from the development set of SQuAD v1.1
[RZLL16c] by professional human translators into 10 languages. Each lan-
guage has 1190 question-answer pairs. SQuAD is a popular question-answering
dataset consisting of around 100k <passage, question, answer> triplets. We
added an additional Japanese language data set [TSKK19b] which is created
with similar goals and has the same format.

• TyDiQA is another QA dataset with 204K question-answer pairs in 11 typo-
logically diverse languages. Unlike MLQA and XQuAD, it is directly collected
in each language and does not involve any translation. We use, TyDiQA-GoldP

3https://www.wikihow.com/
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datasets which are guaranteed to have extractive nature. We added Tamil as
an additional language that shares the same format and is created with similar
goals.

We use English data from XL-Sum and Wikilingua for the English fine-tuning step
while experimenting with the respective dataset. MLQA, TyDiQA and XQuAD do
not have any English training data. Following the trend [LOR+20b, CCC+20b] we use
SQuAD v1.1 training data at the English fine-tuning step. The validation dataset is
used for meta-training (only for selected centroid languages) and test dataset is used
for the zero-shot generation. The summary of all languages and data statistics are
presented in Table 6.2.
For each dataset, we grouped the languages into three fixed clusters as per Table-
6.1 and found the centroid language as described in Section-6.4.1. English is the
high resource language and is only used for supervised fine-tuning as described in
section-6.4.2 so it will not be part of any cluster. To make it more concrete, the
XQuAD dataset has 11 low-resource languages (excluding English), the centroid
(Meta-training) languages are <tr, es, th> and non-centroid (Target) languages are
<hi, to, de, ar, vi, zh, ru, el>. For each task and dataset, Table 6.3 summarizes the
clustering, centroid, and non-centroid languages.

6.5.3 Baselines

Due to the unavailability of prior zero-shot models for considered datasets, we design
strong baselines based on recent cross-lingual/multilingual models and architectures.

• EnZmT5: Inspired by Maurya et al. [MDKD21a], we further train the mT5
model with a small monolingual dataset from 30 languages, using an auxiliary
task training objective, followed by task-specific English fine-tuning (similar to
the first three steps of the Meta-XNLG model proposed in Section 6.4.2). Finally,
it is then directly evaluated in a zero-shot setting on the target LRLs.

• FTZmT5: In this model we fine-tune EnZmT5 baseline on all centroid lan-
guages. This will ascertain that the improvement of Meta-XNLG is not due to
simply training on more datasets in different languages. This is close to the
Lewis et al. [LGG+20a]’s model, but they use different datasets.

While training EnZmT5 and FTZmT5, we use all applicable precautions as suggested
in sections-6.4.3 and grid search to find the best hyper-parameters.
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SN Language ISO-2 ISO-3 Adap. PT XL-Sum Wikilingua MLQA TyDiQA XQuAD***
train/valid/test test test test test test

1 English* en eng 5k/1k/1k 300k/11k/11k 100k/13k/28k 90k/10k/11k 90k/10k/11k 90k/10k/11k
2 Hindi hi hin 5k/1k/1k 8847 1983 4918 - 1190
3 Urdu ur urd 5k/1k/1k 8458 - - - -
4 Telugu te tel 5k/1k/1k 1302 899 - 5563 -
5 Turkish tr tru 5k/1k/1k 3397 - - - 1190
6 Finnish fi fin 5k/1k/1k - - - 6855 -
7 Japanese ja jpn 5k/1k/1k 889 2529 5000** - -
8 Korean ko kor 5k/1k/1k 550 2435 - 1620 -
9 Gujarati gu guj 5k/1k/1k 1139 - - - -
10 Bengali bn ben 5k/1k/1k 1012 - - 2390 -
11 Marathi mr mar 5k/1k/1k 1362 - - - -
12 Nepali np nep 5k/1k/1k 725 - - - -
13 Tamil ta tam 5k/1k/1k 2027 - - 368** -
14 Punjabi pa pan 5k/1k/1k 1026 - - - -
15 Swahili sw swa 5k/1k/1k 987 - - 2755 -
16 Spanish es spa 5k/1k/1k 4763 22626 5253 - 1190
17 Italian it ita 5k/1k/1k - 10187 - - -
18 Portuguese pt por 5k/1k/1k 7175 16326 - - -
19 Romanian ro ron 5k/1k/1k - - - - 1190 -
20 Dutch nl nld 5k/1k/1k - 6248 - - -
21 German de deu 5k/1k/1k - 11667 4517 - 1190
22 French fr fra 5k/1k/1k 1086 12728 - - -
23 Russian ru rus 5k/1k/1k 7780 10577 - 6490 1190
24 Czech cs ces 5k/1k/1k - 1438 - - -
25 Vietnamese vi vie 5k/1k/1k 4013 3916 5459 - 1190
26 Thai th tha 5k/1k/1k 826 2949 - - 1190
27 Chinese (Sim) zh zho 5k/1k/1k 4670 3772 5137 - 1190
28 Indonesian id ind 5k/1k/1k 4780 9495 - 5702 -
29 Greek el ell 5k/1k/1k - - - - 1190
30 Arabic ar ara 5k/1k/1k 4689 5840 5335 14805 1190

Table 6.2: Details of the datasets used in Meta-XNLG. For adaptive pre-training,
a small 5k/1k/1k dataset is used. Ada.PT: Adaptive unsupervised pre-training. *-
English is a high-resource language for which all three splits were used, as shown in
Row 1. **-Additional language added to the dataset. ***-The dataset does not have
a validation split, so a test data set of centroid languages is used in training, and the
training set is used for evaluation (test set).

6.5.4 Evaluation Metrics

Both automatic and manual evaluation metrics are used to ensure the quality of
the generated text. Particularly, for automatic evaluation ROUGE-L [Lin04b] and
BLEU4 [PRWZ02c] metrics are used for ATS and QG, respectively. Similar to Chi
et al. [CDW+20a], we used three manual evaluation metrics: Fluency referring to
how fluent the generated text is, Relatedness indicating the degree of the input’s
context in the generated text and Correctness measuring the grammar and seman-
tics of generated text. It is often observed that NLG systems suffer from the problem
of Hallucination [NgYW+19]; the Relatedness metric provides clarity in such situa-

4Reported scores are case-mix BLEU-4 from modified sacreBLEU implementation. We modified
the sacreBLEU and ROUGE-L to incorporate language-specific tokenizers and stammers for different
languages.

111



Task/Dataset Cluster-1 Cluster-2 Cluster-3 Centroid Lang Non-Centroid Lang
Lang MeanCD Lang MeanCD Lang MeanCD Meta-train Lang Target Lang

Sum/XL-Sum Punjabi 0.505 Spanish 0.253 Vietnamese 0.291 Punjabi Tamil ,Marathi
Tamil 0.547 Portuguese 0.437 Thai 0.326 Spanish Gujarati , Bengali
Marathi 0.548 French 0.477 Indonesian 0.327 Vietnamese Telugu, Hindi
Gujarati 0.550 Arabic 0.465 Nepali , Urdu
Bengali 0.566 Chinese 0.561 Japanese, Turkish
Telugu 0.574 Russian 0.902 Korean, Swahili
Hindi 0.630 Portuguese, French
Nepali 0.659 Thai, Indonesian
Urdu 0.663 Arabic, Chinese
Japanese 0.749 Russian
Turkish 0.803
Korean 0.808
Swahili -

Sum/Wikilingua Korean 0.558 Spanish 0.459 Vietnamese 0.484 Korean Japanese, Turkish
Japanese 0.583 French 0.476 Thai 0.496 Spanish Hindi, French
Turkish 0.620 German 0.529 Indonesian 0.536 Vietnamese German, Portuguese
Hindi 1.166 Portuguese 0.535 Arabic 0.595 Italian, Dutch

Italian 0.566 Chinese 0.758 Thai, Indonesian
Dutch 0.674 Russian 0.897 Arabic, Chinese

Czech 1.374 Russian, Czech
QG/MLQA Japanese 1.156 German 0.843 Vietnamese 0.299 Japanese Hindi, Spanish

Hindi 1.156 Spanish 0.843 Chinese 0.459 German Chinese, Arabic
Arabic 0.483 Vietnamese

QG/TyDiQA Telugu 0.682 Arabic 0.579 Telugu Tamil, Bengali
Tamil 0.719 Indonesian 0.619 Arabic Finnish, Korean
Bengali 0.769 Russian 0.940 Swahili, Indonesian
Finnish 0.785 Russian
Korean 0.828
Swahili -

QG/XQuAD Turkish 1.038 Spanish 0.606 Thai 0.515 Turkish Hindi, Romanian
Hindi 1.038 Romanian 0.788 Arabic 0.516 Spanish German, Arabic

German 1.024 Vietnamese 0.519 Thai Vietnamese, Chinese
Chinese 0.813 Russian, Greek
Russian 0.926
Greek 1.071

Table 6.3: Details of language clustering for each dataset, mean cosine distance (meanCD),
and centroid languages. For each dataset, we group languages into three clusters as shown
in Figure 6.1. The Swahili language does not have any typological or task-based represen-
tations, so we added it to cluster 1 based on language typological features and heuristics.
For the TyDiQA dataset, only two clusters are obtained as cluster-2 does not have any
language. If a cluster has only two languages, we randomly selected any language as a
centroid language.

tions. The Correctness metric is the hard metric that considers both semantic and
grammatical aspects of generated text.
We randomly sampled 50 generated examples for each <task, dataset, language>
triplet based on qualified and available native language experts in Hindi, Telugu,
Tamil, and Bengali languages. In total, we selected six triplets for evaluation. To
ensure the inter-annotator agreement and quality, each selected triplet is evaluated by
two sets of annotators. We asked each annotator to rate the generated text on a scale
of 1-5 (where one is very bad and five is very good) for the metrics mentioned above.
We anonymously shared the generated text from two baselines and Meta-XXNLG to
avoid any biased evaluation.
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6.5.5 Implementation Details

We implemented Meta-XNLG using higher library5. SGD with learning rate (α) 1e−4

is used as an inner-loop optimizer, and AdamW with learning rate (β) 1e−5 is used as
an outer-loop optimizer. The inner iteration (m) value is two, and the meta-training
batch size is 8. To partition the training batch into support set (S) and query set
(Q), we experimented (S: Q) with [80:20, 70:30, 60:40, 50:50, 40:60]% splits. The best
results are obtained with equal partition, i.e., 50:50. We also experimented with [2,
5, 10, 15, 20, 25] training epochs. The best performance was observed at 10th epoch.
We use a standard mT5-small sequence-to-sequence Transformer architecture with 12
layers (each 16 heads). It has 1024 dimensions and approx 582M parameters. Ad-
ditional layer-normalization with weight decay (0.1) was used with both the encoder
and decoder. For input, the max sequence length is fixed to 512. We trained all the
models on 1 Nvidia V100 GPU (32GB). Cross-entropy label smoothing is used as a
loss function. We use beam-search with beam size 4; max generation length is 100
for ATS (32 for QG) and min length is 1. To ensure the stated improvement on the
MLQA dataset, we compute average BLEU scores across the best five checkpoints.
We are unable to repeat such experiments for other datasets due to computational
limits.

6.6 Results and Analyses
Automated evaluation results are shown in Tables 6.4-6.8. Meta-XNLG consistently
outperformed the other two baselines on all five datasets and most of the languages.
For the summarization task, among the 33 experiments (19 languages for XL-Sum
and 14 for Wikilingua) Meta-XNLG gives the best performance for 30 experiments.
Wherever it loses out, it does so by a small margin. We see that the performance
gains for the Wikilingua are relatively smaller. This might be due to the nature
of the Wikilingua dataset; we observe that the input documents are a set of usage
instructions for software/tools. For such data, many instructions need to be retained
in the summary. This poses a challenge to all the models including Meta-XNLG .
Similar observations are made by [MDKD21a].
For the question generation task, Meta-XNLG exbits similar trends and outperforms
both baselines across datasets and most of the LRLs except for one - the Indonesian
language for TyDiQA. For MLQA, improvements achieved by the proposed model

5https://github.com/facebookresearch/higher
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are marginal (see Table-6.8). Upon close inspection, we notice that MLQA had a
small number of languages, and the centroid languages are very distinct, i.e., they
have a higher mean distance to other languages from the same cluster as compared
to the other datasets (see Table-6.3). This might be a possible reason for such per-
formance. The human evaluation scores for all three metrics are shown in Table-6.9.
The human evaluations (across both annotator sets) correlate with automatic eval-
uations. Similar to the automatic evaluation, Meta-XNLG consistently outperformed
both baselines for selected languages, tasks, and datasets. High Fluency and Relat-
edness scores for Meta-XNLG indicate that most of the generated text is fluent and
not hallucinated respectively. The correctness metric considers both semantic and
grammatical aspects; good scores on this metric indicate the acceptable performance
for the proposed model in a zero-shot setting. In QG, generating well-formed inter-
rogative sentences is challenging, particularly in zero-shot settings due to the unseen
interrogative syntax structure of target language [MJVG21, MDKD21a]. The above-
average fluency and correctness score for Meta-XNLG indicates that the model quickly
adapts such syntax and performs better.
The consistent improvement in Meta-XNLG for most of the typologically diverse target
languages provides evidence that supervision transfer is more uniform. Considering
acceptable automatic and manual evaluation scores in the zero-shot setting, we con-
clude that our model performs reasonably well except small performance gain with
the MLQA dataset. Meta-XNLG is a zero-shot framework, and we do not assume
any prior training/knowledge for new unseen LRL. The only constraints are that the
new language should be part of base pre-trained models (mT5) and adaptive unsu-
pervised pre-training (uses task-agnostic monolingual data only). Hence, adding new
languages in Meta-XNLG is a simple extension exercise.

Model fr gu id th ta hi mr ja ko tr ru sw pt ar te ur ne bn zh
EnZmT5 18.45 13.21 19.77 21.53 11.58 22.24 11.89 22.81 18.74 17.72 15.27 18.91 18.92 18.44 10.77 21.61 16.24 16.12 21.07
FTZmT5 21.83 7.98 19.27 24.68 10.80 11.92 8.94 23.32 16.82 14.99 12.90 21.01 20.07 15.85 9.14 13.05 11.06 12.66 15.20
Meta-XNLG 22.83 14.02 21.54 24.61 12.88 23.09 12.58 25.33 20.12 18.65 17.31 22.63 20.24 20.11 12.07 23.41 15.45 17.96 22.95

Table 6.4: Zero-shot ROUGE-L scores for 19 target LRL on XL-Sum dataset [HBI+21].
EnZmT5 [MDKD21a] and FTZmT5 are baseline models. Scores are reported after an
extensive hyperparameter search for all the models.

6.6.1 Cross-lingual Transfer:

To have a more general view of the model’s learning of multiple languages, we perform
similarity analysis among representations of the language tags (contextual representa-

114



Model id fr ar pt it th ru cs nl de ja zh hi tr
EnZmT5 15.34 18.72 15.70 17.21 15.05 26.66 14.67 9.42 17.97 13.69 22.32 20.12 18.88 14.45
FTZmT5 13.69 19.37 12.66 17.80 15.54 23.72 11.95 10.20 16.74 12.22 22.81 18.64 17.32 13.84
Meta-XNLG 16.85 20.26 15.66 18.36 16.03 27.71 14.89 11.76 19.09 14.11 22.83 22.45 19.60 15.23

Table 6.5: Zero-shot ROUGE-L scores for 14 target LRLs on Wikilingua dataset
[LDCM20a].

Model ar de zh vi hi el ru ro
EnZmT5 8.55 9.99 23.76 17.29 9.55 8.18 10.98 11.27
FTZmT5 5.82 9.040 22.87 16.47 9.05 6.95 8.87 10.31
Meta-XNLG 8.63 10.52 24.89 20.92 11.90 9.01 11.41 12.24

Table 6.6: Zero-shot BLEU scores for 8 target LRLs on XQuAD dataset [ARY20a].

tion of the <fxx><2xx> tokens from the beginning of the input in language xx). First,
we randomly select 10 languages from the XL-Sum dataset. Then, each language in-
put is passed through the trained encoder of the EnZmT5 baseline and Meta-XNLG

to obtain language tag representations (LTRs). Finally, cosine distance among LTRs
is computed and shown in figure-6.3. It can observed that the EnZmT5 baseline has a
high cosine distance (dark colors) between LTRs and the shared latent representation
space is not much aligned. Meta-XNLG has lower distances (light colors) and shared
latent representation space is more aligned across languages.

6.6.2 Effect of Different Centroid (Meta-Train) Languages:

Table-6.10 shows the results with 36 different language combinations for Meta-XNLG

training on the XL-Sum dataset. For this dataset, the centroid languages are Panjabi
(pa), Spanish (es), and Vietnamese (vi). Results are generally good when centroid
languages are in the training set. The best results are obtained using three centroid
languages from three clusters. The performance dropped when we included fewer
or more than three centroid languages. As discussed in section-6.4.1, learning gets

Model fi ru id sw ko bn ta
EnZmT5 7.87 5.52 5.75 4.48 8.59 5.77 3.08
FTZmT5 8.39 7.28 11.42 5.51 10.05 7.96 2.022
Meta-XNLG 9.08 7.47 9.36 6.42 12.67 9.17 9.76

Table 6.7: Zero-shot BLEU scores for 7 target LRLs on TyDiQA data [CCC+20a].
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Model hi es ar zh
EnZmT5 5.06 6.94 3.46 13.70
FTZmT5 5.14 6.16 2.21 13.38
Meta-XNLG 5.66 7.03 3.66 15.13

Table 6.8: Zero-shot BLEU scores for 4 target LRLs on MLQA data [LOR+20a].

Model Task/Data/Lang Flu Rel Corr Task/Data/Lang Flu Rel Corr
Annotator set-1

EnZmT5 4.06 3.58 2.84 4.28 3.94 3.70
FTZmT5 ATS/XL-Sum/bn 2.82 3.18 2.08 ATS/XL-Sum/te 3.46 3.46 3.22
Meta-XNLG 4.12 4.34 3.44 4.50 4.22 4.04

Annotator set-2
EnZmT5 3.70 3.23 3.26 3.56 3.50 3.20
FTZmT5 ATS/XL-Sum/bn 2.62 2.48 2.16 ATS/XL-Sum/te 3.02 2.84 2.60
Meta-XNLG 3.97 3.48 3.28 4.18 4.10 3.88

Annotator set-1
EnZmT5 4.00 3.72 3.68 4.12 4.24 2.54
FTZmT5 ATS/Wiki/hi 4.07 3.39 3.83 QG/XQuAD/hi 4.22 4.02 2.56
Meta-XNLG 4.09 3.80 3.97 4.42 4.34 2.86

Annotator set-2
EnZmT5 4.38 4.22 4.00 3.28 3.63 2.82
FTZmT5 ATS/Wiki/hi 4.57 4.44 4.08 QG/XQuAD/hi 3.24 3.34 2.89
Meta-XNLG 4.66 4.44 4.16 3.59 3.67 3.24

Annotator set-1
EnZmT5 3.48 3.70 3.46 4.25 4.06 3.10
FTZmT5 QG/MLQA/hi 3.44 3.42 3.18 QG/TyDiQA/ta 3.25 3.01 2.07
Meta-XNLG 3.70 3.74 3.56 4.74 4.20 3.39

Annotator set-2
EnZmT5 3.30 3.28 2.40 3.00 4.08 2.82
FTZmT5 QG/MLQA/hi 3.10 3.44 2.84 QG/TyDiQA/ta 2.55 3.045 1.83
Meta-XNLG 3.24 3.70 2.88 4.04 4.46 3.20

Table 6.9: Human Evaluation results for four languages (hi: Hindi, te: Telugu, ta: Tamil
and bn: Bengali), two annotator sets, two tasks (ATS and QG) and all five datasets.
Flu: Fluency, Rel: Relatedness and Corr: Correctness metrics. Results are shown for two
annotation sets, which ensure bias-free evaluation. Reported scores are the average of all
the annotators in an annotator set.

distracted with many centroid languages. Overall, Meta-XNLG trained with three
centroid languages (row 36) performs best on most of the languages and on average.

6.6.3 Case Study

Fig. 6.4 presents zero-shot generations from Meta-XNLG in Telugu, Tamil, Bengali
and Hindi languages for both ATS and QG tasks. With this qualitative analysis, we
can observe that the zero-shot generation is high quality and acceptable.
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Figure 6.3: Cosine distance between language tags obtained from EnZmT5 baseline (left)
and Meta-XNLG (right) for 10 languges from XL-Sum dataset. Dark colors indicate a higher
cosine distance.

SetUp Meta-Train Langs fr gu id th ta hi mr ja ko tr ru sw pt ar te ur ne bn zh avg
1* pa 16.59 7.55 15.87 23.57 11.10 13.22 9.54 24.17 17.67 15.61 13.51 17.34 16.42 15.94 9.19 12.69 11.84 13.25 20.71 15.04
2* es 21.35 12.73 19.54 23.82 10.42 18.77 10.99 24.15 18.02 15.87 14.10 20.03 19.72 17.46 10.13 20.12 15.06 16.00 22.01 17.38
3* vi 19.67 12.34 18.69 25.02 11.05 19.41 10.90 23.77 18.46 15.15 14.56 20.40 18.02 17.43 10.69 20.23 14.42 15.47 21.58 17.22
4* ru 17.60 12.89 16.97 23.54 10.50 18.03 10.75 24.28 18.09 16.36 - 18.25 17.32 17.63 10.44 20.52 14.28 14.40 22.18 16.89
5* tr 16.57 12.83 16.04 23.77 10.10 17.72 10.65 24.06 17.01 - 14.90 19.46 17.34 17.59 10.40 20.12 13.51 13.35 21.01 16.46
6** np 16.89 9.23 16.47 23.44 10.70 21.51 10.45 24.73 17.12 15.28 14.16 17.03 16.54 16.03 10.43 19.21 - 13.28 21.81 16.35
7** th 17.86 11.60 17.25 - 10.78 17.98 10.30 21.07 17.89 15.73 14.48 18.16 17.59 17.19 9.87 20.11 13.56 15.65 15.35 15.69
8* vi, pa 19.50 7.98 18.02 24.41 11.25 13.33 9.45 23.96 17.37 15.09 13.61 19.34 17.99 16.13 9.11 14.05 11.93 13.20 18.91 15.51
8* tr, es 21.40 12.55 19.73 23.75 11.65 20.61 10.71 24.92 19.28 - 14.12 20.11 19.44 17.17 11.74 21.40 14.78 16.54 22.82 17.93
10* fr, vi - 12.49 19.51 23.72 11.12 18.83 10.38 24.01 18.74 15.98 14.01 19.40 18.96 17.18 10.52 20.44 14.32 15.19 22.36 17.06
11** ur, zh 18.06 12.56 17.26 22.30 11.95 14.27 11.53 21.40 18.51 17.02 14.73 17.58 17.20 17.76 11.18 - 14.41 15.98 - 16.10
12** th, pt 21.28 12.39 19.60 - 10.83 17.90 10.04 22.49 17.02 16.07 14.52 20.19 - 17.61 10.00 19.79 13.77 15.10 21.45 16.47
13@ pa, pt 21.13 8.72 19.92 23.89 11.64 14.38 9.65 24.13 17.36 16.89 14.91 20.90 - 17.36 9.95 15.53 11.66 13.37 22.04 16.30
14@ es, bn 21.61 10.53 18.85 23.23 11.06 17.33 10.15 24.31 17.25 15.68 13.69 19.32 19.27 16.29 10.46 20.40 11.75 - 19.48 16.70
15* pa,fr,ru - 9.80 19.17 23.39 10.54 13.97 9.43 24.41 17.50 16.56 - 19.52 19.07 16.08 9.03 16.44 11.43 13.01 21.71 15.95
16* pa,es,ru 21.34 9.42 19.04 24.58 10.67 13.17 9.02 24.04 16.92 16.30 - 19.90 19.60 16.20 8.98 14.97 11.86 12.76 21.89 16.15
17* vi,pa,fr - 9.75 19.31 23.65 11.18 13.98 9.41 24.52 17.91 15.88 13.79 20.20 19.24 16.28 9.47 15.68 11.78 13.75 19.48 15.85
18** ko,pt,th 21.66 12.94 19.93 - 11.94 20.35 10.42 24.46 - 17.99 15.55 21.22 - 18.58 11.23 21.54 15.20 16.06 16.72 17.24
19** gu,pt,ar 21.83 - 19.52 23.74 10.30 14.46 7.71 23.51 15.57 15.34 13.73 19.40 - - 9.62 18.77 11.30 12.88 21.03 16.17
20@ es,th,ar 22.11 12.14 19.60 - 10.60 17.22 9.92 22.88 16.78 16.18 13.81 20.42 20.09 - 10.25 19.55 13.58 15.35 17.27 16.34
21@ pa,pt,vi 21.75 9.65 19.80 24.49 11.41 13.82 9.81 24.51 17.70 16.16 14.55 20.39 - 17.28 10.04 15.71 11.70 13.91 20.97 16.31
22* pa,es,vi,fr - 9.35 19.74 23.91 11.11 13.86 8.96 24.82 17.70 16.54 13.57 20.65 20.16 16.43 9.52 16.76 11.73 13.48 19.81 16.01
23* pa,ep,vi,ru 21.90 8.39 19.28 24.89 10.65 14.19 9.38 24.25 16.47 16.00 - 21.20 20.12 16.38 9.19 16.07 11.62 12.98 19.03 16.06
24* pa,es,vi, tr 22.35 9.89 20.57 24.59 11.45 15.10 9.59 25.44 17.70 - 13.89 21.55 20.28 17.23 10.00 17.20 12.73 13.58 19.82 16.83
25** zh,bn,te,pt 21.73 10.94 18.98 22.99 10.58 16.23 9.46 20.57 16.16 15.80 13.57 20.23 - 16.23 - 19.51 12.23 - - 16.35
26** id,sw,ur,pt 22.70 12.77 - 24.17 10.95 15.94 10.68 24.77 17.58 17.13 14.42 - - 18.64 10.39 - 13.70 14.40 22.87 16.74
27@ pa,es,vi,hi 21.81 8.66 19.21 24.43 10.64 - 11.03 24.25 17.20 16.12 12.89 20.86 19.93 16.25 9.58 16.15 16.36 12.56 13.78 16.21
28@ pa,es,vi,ko 22.33 12.47 20.70 23.70 12.53 19.55 10.75 25.44 - 17.90 15.02 22.63 19.97 18.33 11.68 21.52 14.71 16.26 21.32 18.16
29* pa,es,vi,fr,tr - 10.26 20.39 24.04 11.12 14.79 9.08 25.42 17.75 - 13.35 21.17 20.28 16.50 9.65 17.43 12.43 14.01 20.62 16.37
30* pa,es,vi,ru,mr 21.77 10.12 19.44 23.85 10.81 23.85 - 24.20 16.95 16.02 - 20.60 19.97 16.30 9.57 17.46 15.71 13.47 18.40 17.56
31** id,sw,ur,po,te 22.43 11.19 - 23.88 9.87 16.08 9.64 24.21 16.05 17.05 14.19 - - 18.54 - - 13.08 13.19 20.44 16.42
32@ pa,es,te,mr,gu 20.51 - 18.05 22.01 9.69 23.94 - 21.93 15.32 15.04 11.83 18.51 19.39 14.60 - 16.70 15.81 12.70 10.13 16.63
33* pa,es,vi,fr,tr,ru - 9.98 20.59 24.61 11.14 14.72 9.21 25.18 17.53 - - 21.54 20.55 16.61 9.65 17.72 12.07 13.71 21.80 16.66
34* pa,es,vi,fr,tr,ru,mr - 10.15 20.65 24.42 10.56 24.34 - 24.66 17.09 - - 21.28 20.60 16.11 9.97 18.21 15.81 13.21 19.32 17.76
35* pa,es,vi,fr,tr,ru,mr,ja - 9.88 19.61 23.51 9.83 23.40 - - 13.27 - - 21.43 20.36 15.83 9.24 15.66 16.24 12.68 20.32 16.52
36* Meta-XNLG(pa,es,vi) 22.83 14.02 21.54 24.61 12.88 23.09 12.58 25.33 20.12 18.65 17.31 22.63 20.24 20.11 12.07 23.41 15.45 17.96 22.95 19.40

Table 6.10: Meta-XNLG’s zero-shot evaluation scores (Rouge-L) with different meta-
training (centroid) language combinations on the XL-Sum dataset. We cut the hierarchical
clustering dendrogram shown in Figure 6.2, at the lower level to obtain more clusters. In
total, we obtained eight centroid languages, i.e., pa, es, vi, tr, ja, mr, fr and ru. ’-’ indicates
the language used in training, so scores are not zero-shot and not included. Markers ’*’,
’**’, and ’@’ indicate meta training with all-centroid, all-non-centroid, and a mix of both
(centroid & non-centroid) languages.
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6.7 Conclusion
In this work, we propose a novel Meta-XNLG framework based on meta-learning and
language clustering for effective and more uniform cross-lingual transfer and genera-
tion. To the best of our knowledge - this is the first study that uses meta-learning for
zero-shot cross-lingual transfer and generation. The evaluations are done with two
downstream challenging NLG tasks (ATS and QG), five publicly available datasets
and 30 languages. Consistent improvement for both human and automatic evalua-
tion metrics is observed over baselines. The cross-lingual transfer analysis indicates
the model’s ability towards uniform cross-lingual transfer to multiple low-resource
languages.

6.8 Insights, Limitations and Future Work
Insights: As discussed, there is a trade-off between the number of clusters and
generalization capabilities. To ensure that we have selected the correct number of
clusters, we conducted an extensive ablation study with 36 experimental setups
involving different numbers of clusters and various combinations of languages.
We observed that the model with three clusters performs the best. The language
cluster obtained with the approach proposed by Oncevay et al. [OHB20] resulted
in clustering that is close to the clustering approach with language family - further
validating the correctness of clustering. Unlike the ZmBART zero-shot QG model,
where generated questions are of a code-mixed nature, starting with wh-words,
the Meta-XNLG model successfully mitigates these issues and generates well-formed
questions. This indicates the adaptability of Meta-XNLG for different language
structures through meta-learning.

Limitations:
The Meta-XNLG framework has two limitations: (1) Similar to the ZmBART model
for new languages, there is a need to re-train the adaptive unsupervised step with
new languages. (2) We require small, task-specific annotated (validation) data for
centroid languages, which will be used in the meta-training.

Future Work: In the future, we will extend this framework to more languages,
tasks, and datasets. We will also plan to advance language technology for those
LRLs that do not have parallel data, possess limited monolingual data, and whose
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representations are absent from large multilingual pre-trained language models
(Chapter 7).
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Input Document: ভারেতর অন� অ�েলও �কাক, �পপিস িনিষ� করার দািব জানাে�ন কম�রা। �ানীয় পেণ�র ব�বহার িন��ত করার জন�ই এই উেদ�াগ �হণ কেরেছ
ব�বসায়ীরা। রােজ�র শীষ � দু�ট ব�বসায়ী এেসািসেয়শন এই দু�ট পানীয় িনিষ� করার ��াব কেরিছল। তারই ���াপেট আজ বুধবার �থেক তািমলনাড�  রােজ� িনিষ�
হেলা �কাকা-�কালা ও �পপিস। �িত�ান�েলা বলেছ, �কামল পানীেয়র �িত�ান�েলা নদী �থেক �চ�র পািন ব�বহার কের, �সকারেণ কৃষকেদর জিম �সেচর সময়ও
ব�াপক �ভাগাি�েত পড়েত হয়। িবেশষ কের খরার সময় �সেচ পািন সমস�া �কট হেয় দাড়ঁায়। রােজ�র দশ লােখরও �বিশ �দাকানদার এ িনেষধা�া �মেন চলেব বেল
ধারণা করা হে�। গত মােস তািমলনাড� েত 'জাি�কাট� ' নােম ঐিতহ�বাহী ষােঁড়র লড়াই িনিষে�র িব�ে� ব�াপক িবে�ােভর ঘটনা �দেখ রােজ� �পপিস, �কাকা-�কালা
িনিষে�র ��াব কের শীষ � দু�ট ব�বসায়ী সংগঠন �ফডােরশন অব তািমলনাড�  ��ডাস � এেসািসেয়শন (এফ�টএন�টএ) এবং তািমলনাড�  ��ডাস � এেসািসেয়শন। িবে�ােভর
সময় অেনেক বলিছেলন 'জাি�কাট� ' িনিষ� করা মােন �ানীয় ঐিতহ� ও সং�ৃিতেক অবমাননা করা। \"আমরা কেয়ক মাস আেগ �কামল পানীেয়র িব�ে� আমােদর
�চারণা �� কির, িক� যখন আমরা 'জাি�কাট� ' িনিষে�র �িতবােদ িবে�াভ �� কির, �কামল পানীেয়র িব�ে� আমােদর �চারণাও িভ� �প পায়\"- িবিবিস তািমল
সািভ�সেক �দয়া এক সা�াৎকাের বলিছেলন এফ�টএন�টএ'র ��িসেড� থা �ভলায়ান। \"�পপিস" 

Human:  ভারেতর দি�ণা�লীয় রাজ� তািমলনাড� র ব�বসায়ীরা �সখােন �কাকা-�কালা ও �পপিস িব�� িনিষ� �ঘাষণা কেরেছ। 
Meta-XNLG :  ভারেতর তািমলনাড�  রােজ� �কামল পানীয় িনিষ� করার দািব জািনেয়েছ ব�বসায়ীরা।

Input Document: ठंडे पानी से धोते �ए दाग को कुछ ह�ा करने की कोिशश कर�। ठंडे पानी और एक टॉवल की मदद से ध�े को गीला कर ल�। या िफर, दाग को ठंडे पानी के नीचे भी
लगाया जा सकता है। पे� बनाने के िलए एक भाग ठंडा पानी और दो भाग नमक को िमलाएँ। आपको िकतने नमक और पानी की ज�रत पड़ने वाली है, ये तो पूरी तरह से उस ध�े के
आकार पर िनभ�र करेगा। नमक के साथ म� ब�त �ादा पानी भी न िमलाएँ, नही ंतो ये िल��ड बन जाएगा। पे� फैलाने लायक गाढ़ा होना चािहए। आप चाह� तो पे� को दाग पर लगाने के
िलए अपने हाँथ का या एक साफ कपड़े का यूज भी कर सकते ह�। पे� को ब�त आराम से ध�े के ऊपर रगड़ ल�। अब आपको वो दाग ह�ा होता �आ नजर आना चािहए। जैसे ही,
�ादातर या पूरा ध�ा िनकल आए, कपड़े को ठंडे पानी के नीचे लगा द�। पे� के पूरे साफ होने तक इसे धोते रह�। अगर दाग अभी तक पूरा नही ंिनकल पाया है, तो पे� को िफर से लगा
द�। उस कपड़े को धोने के िलए भी उसी साबुन का यूज कर� , िजसे आप नॉम�ली यूज िकया करते ह�। हालाँिक, कपड़े को धोने के िलए ठंडे पानी के अलावा और िकसी चीज़ का यूज िब�ुल
न कर�। कपड़े को धो लेने के बाद, इसे हवा म� सूखने के िलए लटका द�। 
Human:  दाग को ठंडे पानी से धो ल�: नमक और पानी से एक पे� तैयार करना: पे� को ध�े पर लगा ल�: कपड़े को ठंडे पानी म� धो ल�: नॉम�ल जैसे ही धो ल�:. 
Meta-XNLG :  ध�े  को ठंडे पानी से धोने के िलए एक टॉवल का यूज कर ल�। नमक और पानी का घोल बनाये। ध�े को घोल से धोये;  ठंडे पानी से धोये।

Passage: Coordinates: வால்ட் �ஸ்னி உலகம் (Walt Disney World) அல்ல� ேவால்ட் �ஸ்னி உலக ஓய்�டம் ��க்கமாக �ஸ்னி உலகம்
என்ப� உல�ன் �க அ�கமாேனார ்ெசல்�ம் �ற்�லா மற்�ம் ெபா��ேபாக்� ஓய்�டமா�ம். இ� அெமரிக்கா�ன்
�ேளாரிடா�ல் உள்ள ��னா �ஸ்டா என்ற ஏரி�ல் அைமந்�ள்ள�.[1] வால்ட் �ஸ்னி நி�வனத்தால் பராமரிக்கப்ப�ம்
இவ்�டத்�ன் பரப்பள� 30,080 ஏக்கர ்(12,173 ெஹக்டயர;் 47 ச�ர ைமல்) பரப்பளைவக் ெகாண்ட�. வால்ட் �ஸ்னி உல�ல் நான்�
ேகளிக்ைகப் �ங்காக்க�ம் மற்�ம் இரண்� நீரப்் �ங்காக்க�ம், இ�ப்பத�் நான்� ஓய்� ���க�ம் மற்�ம் இ�
ஆேராக்�ய நீ�ற்� மற்றம் உடற்ப�ற்� நிைலயங்கள், ஐந்� ேகால்ப் �ைளயாட்�டங்கள் மற்�ம் �ற ெபா��ேபாக்�
அம்சங்க�ம் உள்ளன.ேமற்ேகாள்கள் ெவளி�ைணப்�க்கள்ப�ப்�:�ற்�லாப�ப்�:�ேளாரிடா 
Answer: �ேளாரிடா�ல் 
Question (Human):  �ஸ்னி ேவரல்்ட் எங்� உள்ள�? 
Question (Meta-XNLG ):  வால்ட் �ஸ்னி உலகம் எங்ேக அைமந்�ள்ள�?

Passage: दि�णी कैिलफोिन�या एक संयु� सां��कीय �े�, आठ महानगरीय सां��कीय �े�ो,ं एक अंतररा�� ीय महानगरीय �े� और कई महानगरीय िडवीजनो ंसे िमलकर बना �आ है।
इस �े� म� दो िव�ा�रत महानगरीय �े� बसे �ए ह� जो जनसं�ा म� पांच िमिलयन से अिधक ह�। इनके अंतग�त �ेटर लॉस एंिज� �े� म� 17,786,419, और सैन िडएगो-ितजुआना म�
5,105,768 की आबादी ह�। इन महानगरीय �े�ो ंम� से, लॉस एंिज�-लॉ�ग बीच-सांता एना महानगरीय �े�, नदी के िकनारे पर ��थित-सैन बना�िड�नो-ओटंा�रयो महानगरीय �े�, और
ऑ�नाड�-थाउज़�ड ओ�-व�चुरा महानगरीय �े� िमलकर �ेटर लॉस एंिज� की रचना करते ह�; जबिक एल स�ट� ो महानगरीय �े� और सैन िडएगो-का��बैड-सैन माक�स महानगरीय �े�
दि�णी सीमा �े� बनाते ह�। �ेटर लॉस एंिज� के उ�र म� सांता बारबारा, सैन लुइस ओिबसपो और बेकस�फी� महानगरीय �े� आते ह�। 
Answer: 17,786,419 

Question (Human):  �ेटर लॉस एंिज� �े� की जनसं�ा िकतनी है? 

Question (Meta-XNLG ):  �ेटर लॉस एंिज� �े� म� िकतनी आबादी है?

Passage: िशकागो िव�िव�ालय के प�रसर की पहली इमारत�, जो अब मु� �ांगण के �प म� जानी जाती ह�, एक \"मा�र �ान\" का िह�ा थी,ं िजसकी क�ना िशकागो िव�िव�ालय
के दो ट� ��यो ं�ारा की गई थी और िजसे िशकागो के वा�ुकार हेनरी इवेस कॉब �ारा तैयार िकया गया था। मु� �ांगण म� छह चौकोर �ांगण ह�, ��ेक �ांगण एक चौकोर भवन से िघरा
होता है, िजसके �ारा एक बड़े चौकोर �ांगण की सीमा बनती है। मु� �ांगण की इमारतो ंको कोब, शे�ी, �टान और कूिलज, होलाबड� और रोश और अ� वा�ुकला फम� �ारा
िडजाइन िकया गया था, जो िव�ो�रयन गोिथक और कॉलेिजएट गोिथक शैिलयो ंके िम�ण के �प म� ऑ�फोड� िव�िव�ालय के कॉलेजो ंपर आधा�रत ह�। (उदाहरण के िलए, िमशेल
टॉवर, ऑ�फोड� के मै�डलेन टॉवर के बाद तैयार की गई है, और यूिनविस�टी कॉम�, हिचंसन हॉल, �ाइ� चच� हॉल की �ितिलिप ह�। 
Answer: मु� �ांगण 

Question (Human):  िव�िव�ालय �ारा िनिम�त पहली इमारत आज िकस नाम से जानी जाती ह�?" 

Question (Meta-XNLG ):  िशकागो िव�िव�ालय के प�रसर की पहली इमारत का  �ा नाम है?
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Input Document: �ప�త� ం� ఆ� �� ��నం స� తమ ��ండ��� ం�� ��ం� వర� ��టం ఆప�మ� ��� �� �పక�ం��. ఆ� �� ��� క
సం�ల �ఏ� ఆధ� ర� ం� ఈ సభ జ��ం�. ��� �ల� మద��� ప� �జ�య ���ల �య�� ��� �జర�� �. సభ జ��న స�� నగ�
ఇం�� ���యం ��� �ల� �ం���ం�. �ం��� �య�� �వం� ���, ��ఎ� అధ� �� �దండ �ం, ��� �లం�ణ అధ� �� ఎ�.రమణ,

��ఐ �య�� �డ �ంక� ���, ��� �త ���, ఎంఆ�� ఎ� �య�� మంద కృష���గ ��� ప� �ప� సం��, �జ�య ���ల
�య��, క����, ��� క సం�ల �ప���� ఈ సభ� �జర�� �. సభ � ��� �న �రం� �ప�త�  �ఖ�� త��  ప�� �. ��� �ల�
అండ� ఉం�మ� భ�� ఇ�� �. ఆ� ��� ��నం �యడం ఎం�� �ధ� ం �� ��� ల� �వం� ��� �ప��� ��  ��ం� ���. �లం�ణ
�ఎం ��ఆ� ���� �ర ��� అ��  ������ ��� ���ం��� � అ� �ప�� ం��. ��� �ల� మద��� ఆం�ళన� ���మ�,

అవసర�� ��య� ���  �ర� ���మ� �దండ�� �చ� �ం��. ‘‘��ఆ� ఎ��  �స��� చ��న� ��� �ం��. ��, ఆయన�
��� ంగం� �� అవ�హన ��’’ అ� �డ �ంకట��� �మ�� ం��. ఈ స��  �షయం� �ం�దం �క� ం ����ల� ఆయన ���. ��� �ల
ఐక� త� �బ� �య��� ��ఆ� ��ట� ప�� ��� ర�, ��� �� అ�పమత�ం� ఉం�ల� ఎ�.రమణ �జ��� ���. ఆ� ��� అ�� ��ంతం
��ల� �ప�త� ం �పయ�� � ���ంద� ఆ��ం��. ��ఆ� అవ�శ�� అ�, త�� � �ప��� ����� ర� ��� �త ��� అ�� �. సకల
జన �� సభ� �ద��� � �� ఇతర ��ం�ల� �ం�న ఆ� �� �బ� ం� తర� వ�� �. సభ� ��ఆ� � వ� ��కం� ���� �� ���
���ం��. స� ��ంగణం స��క �వడం� బయట �� �ద� సంఖ� � ��� �� �లబ����. ఆ� �� ��� �ల� �� �మప�ల �ర� కర ��
�� సభ� �ద� సంఖ� � �జర�� �. ఆ� �� స��  �ధ���� 26 ��ల� ���ం�. �ప����� స��  ��� సం��� ఏ� క��ంచడం ��.

�ప�త� ం, ��� క సం�� తమ తమ �దనల� క��బ� ఉ�� �. ఆ� ��� �ఖ� మం�� ��ఆ� �ధ�రం స�� �ర� �ం��. మ���,

���రం అ��  ��ల �ం� ���ర ��� ��ల� ఆ� �� �ఏ� ������ ం�. ఇ� �� చదవం�: (��� ���� �� ��, ఇ� �� ��� ,

�� ట� � �� అవ� ం�. ��� � � స� ��� � �యం�.) 
Human:  స��  �ట ప��న �లం�ణ ఆ� �� ��� �� �ధ�రం �ద��� � సకల జన�� ��� సభ �ర� �ం��. 
Meta-XNLG :  �లం�ణ ఆ� �� ��� క సం�ల �ఏ� ఆధ� ర� ం� జ��న సకల జన �� సభ �ద��� � జ��ం�.
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Figure 6.4: Zero-shot samples generated by Meta-XNLG in Telugu, Tamil, Bengali
and Hindi languages. The top three samples are for ATS, and the bottom three
are for QG tasks. The generated samples are taken from all five datasets. In some
instances, the model learns to generate an actual target language script even though
the reference is in transliterated form. See the underlined token (in red font color) in
the TyDiQA-Tamil example. 120



Chapter 7

Zero-Shot Machine Translation for
Extremely Low-resource Languages

7.1 Introduction
In this chapter, we continue exploring cross-lingual modeling for low-resource lan-
guages (LRLs). The efforts with ZmBART, Meta-XNLG , and the NLP research
community on multilingual modeling have extended the coverage of NLP technolo-
gies for many LRLs. However, there is a long-tail of languages for which there is no
parallel/pseudo-parallel data, no/limited monolingual data, and their representations
from the multilingual pre-trained language models (mPLMs) are absent. These lan-
guages are referred as extremely low-resource languages (ELRLs). Now, we turn our
focus to enabling technology for ELRLs. For any language, the technology advances
with a high-quality evaluation set that assesses the model’s performance or tracks its
progress. Most of the NLG tasks lack such a gold standard evaluation set for ELRLs.
Considering this, in this chapter, we shifted our focus to the machine translation task
where the evaluation test for ELRLs is available from the recently released FLORES-
200 evaluation set [CjCÇ+22]. Before we dive into modeling details, let’s take a step
back and understand the state of language technology for ELRLs.
Recently, there has been remarkable progress in NLP research, primarily due to ad-
vancements in large pre-trained language models. The global linguistic landscape
comprises approximately 7,000 spoken languages worldwide1. A notable disparity is
evident in NLP research, with the majority of studies conducted on English data
[Ben19, JSB+20]. This is concerning as the vast majority of the global population —

1https://www.ethnologue.com/insights/how-many-languages/
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roughly 95% — does not speak English as their primary language, and a staggering
75% do not speak English at all2. According to Ruder et al. [Rud22], out of the
7,000 languages, approximately 400 languages have more than 1 million speakers and
about 1,200 languages have more than 100,000 speakers. Despite this, only around
100 languages are incorporated into large pre-trained models, and limited resources
are available for building NLP models for LRLs. Furthermore, a study presented
at ACL 2008 [Ben11] revealed that 63% of all papers focused only on the English
language. A more recent study during ACL 2021 [RVS22] concluded that nearly 70%
of the papers were evaluated in English. Even a decade later, there has been little
change and less focus on ELRLs.
The modern neural machine translation [AJF19, GSFP21, SBF+22] has achieved re-
markable performance for many languages, but their performance heavily relies on
the availability of large parallel or monolingual corpora [KK17]. However, as men-
tioned earlier, ELRLs present unique challenges for model development. Evan for
the MT task, the ELRLs lack parallel data, are excluded from mPLM, and possess
limited monolingual data. Towards these concerns, this work is positioned as a
step towards enabling machine translation from ELRLs to English direc-
tion with no and limited resources. Primarily focused on zero-shot setting for
scalability.
Fortunately, many ELRLs are lexically similar to some HRLs. Lexical similarity
refers to languages sharing words with similar form (spelling and pronunciation) and
meaning.3 This includes cognates, lateral borrowings and loan words. We explore
if cross-lingual transfer can be enabled or improved for ELRLs by explicitly taking
lexical similarity into account. In particular, we explore MT from an ELRL to
another language (English) with transfer enabled by a related HRL on
the source side. Our key insight is that cognates in ELRL having similar spelling
to the HRL word can be thought of as misspellings of the latter. For example, the
word “Monday” is somvar in the Hindi language and somar in the Bhojpuri language.
They are lexically very similar. If we make the HRL to English MT model robust to
spelling variations, it will improve cross-lingual transfer to related ELRLs. To achieve
spelling variation robustness, we propose two novel noise augmentation approaches
in the HRL of the HRL to English large parallel training data. The noise acts as
a regularizer, and a model trained with this noisy HRL to English parallel data

2https://www.ethnologue.com/insights/most-spoken-language/
3https://en.wikipedia.org/wiki/Lexical_similarity
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exhibits robustness to perturbations in representations of words in closely related
ELRLs, hence improving model generalization.
Next, we will briefly provide an overview of the two proposed novel noise augmenta-
tion models: (1) Character-span noise augmentation and (2) Selective unsupervised
noise augmentation.

Character-Span Noise Augmentation: In this modeling approach, we introduce
random noise to each HRL example by adding 1 to 3 character grams (spans). Specif-
ically, between 9% and 11% of the total characters in each example are selected noise
augmentation. For noise augmentation, we employ span deletion and span replace-
ment with a single random character of ELRL operations, both with equal probabil-
ity. As the noise augmentation is based on character span, it is called as CharSpan
model. In CharSpan, we do not require any data in ELRLs; only alphabets are
used. Fig. 7.1 illustrates a sample example where the surface-level text alignment
improves with span noise augmentation.

  HRL (HIN):            इस सीज़न म� बीमारी के शु�आती मामले जुलाई के आ�खर म� सामने आए थे।
  ENG:                          The initial cases of the disease this season were reported in late July.

  HRL (HIN)+CSN:  ए_ सीज़न म बीमारी के __प_ मामले जुलाई के आ�खर म सामने आए _।

  ELRL1 (BHO):      ए सीजन म� ई बीमारी क पिहला मामला जुलाई क आ�खर म� सामने आ गइल रहले।

  ELRL2 (HNE):       ए सीजन म ए बीमारी के पिहला मामला जुलाई के आ�खर म सामने आए रिहस।

Figure 7.1: Hindi (HIN; HRL), Bhojpuri (BHO; ELRL) and Chhattisgarhi (HNE; ELRL)
parallel sentences. Additionally, the corresponding noisy Hindi example with character-span
(CSN) noise. BHO and HNE are closely related to HIN. After noise augmentation, noisy
Hindi becomes lexically more similar to BHO and HNE.

Selective Unsupervised Noise Augmentation: Unlike CharSpan, this model
is based on single character noise augmentation and noise augmentation is systematic
(linguistically inspired) not random. It consists of two stages: Selective Candidate
Extraction and Noise Augmentation. In the selective candidate extraction phase, can-
didate characters are extracted in an unsupervised manner using small monolingual
data from closely related HRL and ELRLs. It relies on BPE merge operations and
edit operations that take into account lexical similarity and linguistic properties. In
the noise augmentation phase, noise is augmented into the source side of parallel data
of HRL using greedy, top-k, and top-p sampling algorithms. The proposed model is
referred to as the SelectNoise. SelectNoise, required small monolingual (1000
examples) data in ELRLs. Fig. 7.2 illustrates a sample example where the surface-
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level text alignment improves with proposed SelectNoise noise augmentation as
compared to random character noise augmentation.

कनािडयन के �खलाफ नडाल का सीधा �रकॉड� 7-2 है।HIN:

Random Character Noise Injection (Lexical Similarity = 0.61)

Nadal's head to head record against the Canadian is 7–2.ENG:

N-HIN: कनिडयन के �खलाफा नडा क सीधा �रकॉड� 7-2 हा।
BHO:  कनाडा के �खलाफ़ नाडाल के हेड-टू-हेड �रकॉड� 7-2 के बा।

कनािडयन के �खलाफ नडाल का सीधा �रकॉड� 7-2 है।HIN:

`

SELECTNOISE Model (Lexical Similarity = 0.77)

Nadal's head to head record against the Canadian is 7–2.ENG:

N-HIN: कनिडयन के �खलाफ़ नाडाल के सीधा �रकॉड� 7-2 बा।
BHO:  कनाडा के �खलाफ़ नाडाल के हेड-टू-हेड �रकॉड� 7-2 के बा।

Figure 7.2: Illustration of character noise augmentation with random baseline [AS22] and
propose SelectNoise model. The SelectNoise enhances lexical similarity between noisy
HRL (N-HIN) and ELRL (BHO). ENG: English, HIN: Hindi, N-HIN: Noisy Hindi and BHO:
Bhojpuri languages. Red: Insertion, Blue: Deletion and Green: Substitution operations.

CharSpan and SelectNoise models are explored dis-jointly at the parallel span
of time. Consequently, the experimental setups and evaluations for these models
differ from each other, with minimal overlap. Since both models address the same
problem, we have presented them in a single chapter to avoid redundancy. However,
it’s important to note that we have not included any direct comparison between
these two models. While reading these two modeling approaches, the reader should
maintain this perspective and treat them separately.
Our key contributions are:

• We propose a novel model CharSpan [MKDK24]: Character-Span Noise
Augmentation, which considers surface-level lexical similarity to improve cross-
lingual transfer between closely-related HRLs and ELRLs. The proposed ap-
proach shows, on average, 12.5% chrF improvement over baseline NMT models
across all considered ELRLs.

• We propose a novel SelectNoise4 [BMD23]: Unsupervised Selective Charac-
ter Noise Augmentation approach to improving cross-lingual transfer between
closely-related HRLs and ELRLs. This is an unsupervised mechanism to extract

4Equal contribution with my co-author Maharaj Brahma
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selective candidate characters based on BPE merge operations and edit opera-
tions. Furthermore, the noise augmentation employs greedy, top-k, and top-p
sampling techniques to sample noise augmentation candidates. The proposed
approach achieved a cumulative gain of 11.3% chrF over baseline NMT models.

• The zero-shot evaluations are conducted with both automated and human eval-
uation metrics. The evaluations are done across several ELRLs from typologi-
cally diverse language families.

• We have conducted extensive ablation and analyses for both models to gain
insights and demonstrate the effectiveness of the proposed approaches.

7.2 Related Work
In this section, we review three threads of literature related to the proposed models:
(1) MT for LRLs/dialects, (2) vocabulary adaptation for low-resource MT, and (3)
data augmentation for low-resource MT.

7.2.1 MT for Low-resource Languages/Dialects

Due to the unavailability of the large bi-text dataset for LRLs, much of the
existing research focuses on multilingual MT. This enables cross-lingual trans-
fer [NC17, ZYMK16] and allows related languages to learn from each other
[FBS+21, CjCÇ+22, SBF+22]. While this direction has gained significant atten-
tion, the performance improvement for LRLs as compared to HRLs has been lim-
ited [TBC+21] and remains an open area of research. In another thread, efforts
have been made for low-resource MT models directly from the monolingual dataset
[ALAC18, LCDR18, LLG+20b]. These unsupervised approaches show promise but
still require a large amount of monolingual data, which should ideally match the
domain of the HRLs [MDK20]. However, for many LRLs, monolingual datasets are
often unavailable [ARY+20b]. In contrast, we propose models that do not require any
parallel data and no monolingual data (CharSpan)/ limited monolingual datasets
(SelectNoise). This characteristic ensures the scalability of our proposed models
to many ELRLs.
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7.2.2 Vocabulary Adaptation for Low-resource MT

Early exploration of character-based MT showed the promise [CCB16, LCH17] with
coverage and robustness [PEV20, LF20]. However, recent modeling concludes a num-
ber of challenges [GBDG19, LF20] in terms of training/inference times and perfor-
mance as compared to the subwords models. Specifically, [SL21] shows that character
MT and Byte MT [CjEF17] have worse performance than the Byte Pair Encoding
(BPE; [SHB16b]) model and have limited practical usage [LSF22]. The effectiveness
of the BPE algorithm [Gag94] is reported for NMT [SHB16b] and serval other NLP
tasks [LOG+19]. Other algorithms like Sentencepiece [KR18] and Wordpiece [Goo]
are similar to BPE. We take inspiration from existing works and proposed a model
based on BPE.
Given the potential of the BPE model, various methodologies have been developed for
vocabulary modification/generation/adaption [PEV20, KMP+21, PTS22, MPR22].
In particular, the work of [PEV20] utilizes the BPE algorithm to generate the vo-
cabulary and sample different segmentations during training. [PTS22] introduce an
extension of BPE, referred to as Overlapped BPE (OBPE), which takes into account
both HRLs and LRLs tokens during vocabulary creation. They demonstrate the effec-
tiveness of this approach in only NLU tasks. In contrast, in this study, we adapt the
standard BPE model to learn vocabulary with noisy HRL data for an NLG task, i.e.,
MT. The proposed noise augmentation-based modeling effectively learns a vocabulary
that improves cross-lingual transfer from HRLs to LRLs.

7.2.3 Data Augmentation for Low-resource MT

The limited availability of parallel data leads to a wide range of data augmentation
approaches [ZWL+19, GZW+19, CK18]. Traditional approaches include perturbation
at the word level, such as word dropout [SHB16a], word replacement [WPDN18] and
soft-decoupling (SDE; [WPAN19a]) to improve the cross-lingual transfer for LRLs.
Such perturbation acts as a regularizer and enhances robustness to spelling vari-
ations; however, their impact is limited [AS22]. In a different research direction,
noise augmentation-based modeling [SNW17, KLEG19] has been explored to test the
robustness of MT systems. More recently, lexical match-based models have been ex-
plored to improve the cross-lingual transfer by vocabulary overlapping [PTS22], non-
deterministic segmentation [PEV20] and noise augmentation [AS22, BSP23]. Noise
augmentation models are close to our proposed models. However, these models have
been evaluated with only NLU tasks using pre-trained models. In contrast, we have
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trained our model from scratch specifically for the MT task, which is more challenging
than NLU tasks. Additionally, we introduce two novel approaches: character-span
noise and linguistically inspired systematic noise augmentation techniques tailored
for ELRLs.

Transformer Encoder-
Decoder (M)

 Source HRL 
+ Noise Injection 

Source HRL

Target HRL

Transformer Encoder-
Decoder (M')

Source ELRL

Zero-shot Generation

BPE Vocabulary

(a) Supervised Training Phase (b) Generation Phase 

Figure 7.3: Overview of proposed CharSpan model

7.3 Character Span Noise Augmentation

7.3.1 Methodology

In this section, we present details of the first proposed model: CharSpan. Figure 7.3
illustrates an overview of the proposed CharSpan model for the ELRLs to English
MT task. The model has two phases: supervised training with noisy HRL and zero-
shot generation with ELRLs.

Model Training and Generation:

In the supervised training phase, the source-side training data of the HRL pair (DH)
is augmented with character-span noise (described later) to create the augmented
parallel corpus (D′

H = η(DH)), where η is the noise function. η(DH) can be considered
as the proxy parallel data for the ELRL-English translation task. Next, we learn a
subword vocabulary (V) using D′

H, i.e., the noise is augmented before learning the
vocabulary. A standard encoder-decoder transformer model (M; [VSP+17]) is then
trained with D′

H and V from scratch in a supervised setting to obtain the trained
modelM′ . Finally, in the zero-shot generation phase, for a given source ELR language
L, the target English translation is obtained usingM′ and V in the zero-shot setting.
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Character-Span Noise (CSN) Function:

The character-span noise function makes the model robust to spelling variations be-
tween related languages. This acts as a regularizer and helps improve cross-lingual
representation and transfer. Intuitively, the existing unigram character noise [AS22]
might address limited lexical variations between HRL and ELRLs. To address larger
lexical divergence, we propose a CSN where span noise is augmented. Formally, for a
given sentence, x ∈ X from D′

H(X ,Y) with indices I = 1, 2, . . . , |x|, a subset of these
indices Is ⊂ I is randomly and uniformly selected as the starting point for the noise
augmentation. Subsequently, 1-3 character gram spans are iteratively sampled until
the noise augmentation budget (i.e., 9% - 11% characters) is exhausted. We employ
span deletion and span replacement with a single random character of ELRL, both
with equal probability as the noising operations. This CSN is inspired by SpanBERT
[JCL+20]5. Sample candidate characters for noise augmentation (for replacement op-
eration) are shown in Fig. 7.4. A formal algorithm is presented in the Algorithm 2.
We conducted experiments with all three operations (including insertion), different
percentages of noise, and various other experimental setups. We found the presented
noise augmentation configuration is the most effective.

Language Family Script Candidate Alphabets

Indo-Aryan Devanagari

 '◌ं', '◌ृ', 'प', '◌ॆ', '◌ु', 'ञ', 'ऐ', 'अ', '°', 'र', 'फ', 'ग', 'ह', 'इ' 'न', '◌ँ', 
 'स', 'ए', 'ऑ', 'ल', 'ध', 'ई', 'ऊ', '◌ौ', '◌া', 'ð', 'म', '◌ী', 'छ', '◌ॉ' 'ि◌', 
 'क', 'ण', 'भ', 'ट', '◌ॅ', 'ळ', 'ऋ', 'ष', 'ङ', '◌ै', 'ठ', 'ऌ', 'श', 'ब', 'ল', 
 '◌ी', 'ও', 'त', 'झ', 'ख', 'ज', 'थ', 'उ', '◌ू', '◌े', 'ओ', 'ड', '◌ീ', '◌्', 'T',
 'ऎ', 'ॠ', '◌ो', 'ऒ', '◌ा', 'द', 'হ', '◌ॊ', 'घ', 'च', 'ढ', '◌ু', 'Ձ', 'य', 'औ', 
 'व', 'आ', 'ऍ'

Italic and Malay-
Polynesian

Latin
 A, a, B, b, C, c, D, d, E, e, F, f, G, g, H, h, I, i, J, j, K, k, L, 
 l, M, m, N, n, O, o, P, p, Q, q, R, r, S, s, T, t, U, u, V, v, W, 
 w, X, x, Y, y, Z, z, ñ, ó, ã, à, ç, í, é, ñ

Figure 7.4: Candidate alphabets for noise augmentation from ELRLs

7.3.2 Experimental Setup

We seek answers to the following questions: (1) Does the augmentation of CSN
improve cross-lingual transfer, i.e., zero-shot performance for related ELRLs for MT
task? (2) Why does the model’s cross-lingual transfer improve? - Insights from the
learned embedding space. (3) Is the proposed approach scalable to typologically
diverse language families? (4) Is the model’s generalization ability maintained when

5SpanBERT applies denoising to subword tokens while we apply it at the character level.
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Algorithm 2 CharSpan: Character-span Noise Augmentation Algorithm
Require: [Inputs] high resource language data (DH(X ,Y)) from H-En parallel corpus,

range of noise augmentation percentage [P1, P2], set of noise augmentation candidates
C (see Fig. 7.4), largest character n-gram size N that will be considered for noising

Ensure: [Output] Noisy high resource language data (D′
H)

1: Augmentation percentage (Ip) = random float(P1, P2) ▷ Find a random float value
between P1 and P2

2: Augmentation factor (α) = int(Ip/N)
3: for each h in X do
4: Let sz be the number of characters in h.
5: Let Indices = {⌈(N/2)⌉, · · · , sz − ⌈(N/2)⌉} ▷ Leaving ⌈(N/2)⌉ character indices

from beginning and end
6: Randomly select S = N ∗ α character indices from Indices
7: for each k in S do
8: Span gram (SpN ) = sample character-span size uniformly from {1, 2, . . . , N}

with equal probability
9: Operation (Op) = sample operations uniformly from { delete, replace } with

equal probability
10: Cd ={}
11: if (Op) is replace then
12: Candidate char (c) = single sample character uniformly from C with equal

probability
13: Append candidate char c in Cd

14: end if
15: if SpN == 1 then
16: Perform the operation (Op) with Cd at the index k
17: else
18: Perform the operation (Op) with Cd at the indexes from k−⌈((SpN − 1)/2)⌉

to k + ⌈((SpN − 1)/2)⌉
19: end if
20: end for
21: end for

using smaller parallel training data of HRLs? Considering these, we have designed
the following experimental setup:

Datasets and Languages

We evaluated the performance of the CharSpan on three language families: Indo-
Aryan, Romance, and Malay-Polynesian. We considered six HRLs and twelve LRLs
(two HRLs and several ELRLs from each family). All the ELRLs are lexically similar
and have the same script with corresponding HRLs. Parallel training data for the
HRLs was selected from publicly available datasets. The model’s performance was
evaluated on the FLORES-200 devtest set [CjCÇ+22]. All the dataset details are
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Figure 7.5: Heatmaps showing lexical similarity (LCSR) are presented for three lan-
guage families. The Indo-Aryan languages have the Devanagari script, whereas lan-
guages from the Romance and Malay-Polynesian families have the Latin script.

presented in Table 7.1. Further, Fig. 7.5 presents a lexical similarity heatmap for the
considered language families and ELRLs. It can observed that ELRLs are closely re-
lated to corresponding HRLs. The lexical similarity between languages was measured
using character-level longest common sub-sequence ratio (LCSR) metric [Mel95].

Family Code Language Script Family Subgrouping Res. Train Dev Test Data Source

1

Hin Hindi Devanagari Indo-European Indo-Aryan High 10M 1000 2390 [RDB+22]
Mar Marathi Devanagari Indo-European Indo-Aryan High 3.6M 1000 2390 [RDB+22]
Bho Bhojpuri Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200
Gom Konkani Devanagari Indo-European Indo-Aryan Low - - 2000 ILCI6
Hne Chhattisgarhi Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200
San Sanskrit Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200
Npi Nepali Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200
Mai Maithili Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200
Mag Magahi Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200
Awa Awadhi Devanagari Indo-European Indo-Aryan Low - - 1012 FLORES-200

2

Spa Spanish Latin Indo-European Romance High 6.6M 670 1131 [Rap21]
Pot Portuguese Latin Indo-European Romance High 4.8M 681 1103 [Rap21]
Cat Catalan Latin Indo-European Romance Low - - 1012 FLORES-200
Glg Galician Latin Indo-European Romance Low - - 1012 FLORES-200

3

Ind Indonesian Latin Austronesian Malay-Polynesian High 0.5M 2500 3000 OPUS7
Zsm Malay Latin Austronesian Malay-Polynesian High 0.3M 1500 2000 OPUS
Jav Javanese Latin Austronesian Malay-Polynesian Low - - 1012 FLORES-200
Sun Sundanese Latin Austronesian Malay-Polynesian High - - 1012 FLORES-200

Others

Pan Panjabi Gurmukhi Indo-European Indo-Aryan Low 1M* 1000* 1012 FLORES-200
Guj Gujarati Gujarati Indo-European Indo-Aryan Low 1M* 1000* 1012 FLORES-200
Ben Bengali Bengali Indo-European Indo-Aryan High 1M* 1000* 1012 FLORES-200
Tam Tamil Tamil Indo-European Indo-Aryan Low 1M* 1000* 1012 FLORES-200
Tel Telugu Dravidian Indo-European Indo-Aryan Low 1M* 1000* 1012 FLORES-200
Mal Malayalam Malayalam Indo-European Indo-Aryan Low 1M* 1000* 1012 FLORES-200
Ora Oriya Oriya Indo-European Indo-Aryan Low 1M* 1000* 1012 FLORES-200

Table 7.1: Dataset details and Statistics. * are obtained from [RDB+22]

Baseline Models

We compare the proposed model performance with the following strong baselines:
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• Vanilla NMT (BPE; [SHB16b]): Neural Machine Translation model train-
ing with the standard BPE algorithm.

• WordDropout [SHB16a]: In this baseline, the embeddings of randomly se-
lected 10% words in the source sentences of HRL to 0.

• SubwordDropout: It is a variant of WordDropout baseline where we drop
the BPE tokens instead of words.

• WordSwitchOut [WPDN18]: This baseline employs a data augmentation
technique where random words in both the source and target sentences are re-
placed with randomly selected words from their respective vocabularies. We
have utilized the officially released implementation with a 10% word replace-
ment rate.

• SubwordSwitchOut: It is a variant of WordSwitchOut baseline where we use
the BPE tokens instead of words.

• Overlap BPE (OBPE; [PTS22]): The approach modifies the BPE algorithm
to encourage more shared tokens from HRLs and LRLs in the vocabulary. This
model required a monolingual dataset for LRLs. We use a small monolingual
dataset, based on availability, for the ELRLs. Earlier work applied OBPE for
NLU tasks only - we are the first to investigate it for MT.

• Soft Decoupled Encoding (SDE; [WPAN19b]): In the SDE approach, the
authors have designed a framework that effectively decouples word embeddings
into two interacting components: representing the spelling of words and cap-
turing the latent meaning of words. This modeling technique has demonstrated
its effectiveness in improving the performance of LRLs. We use the officially
released implementation of SDE.

• BPE-Dropout [PEV20]: It utilizes the BPE algorithm to learn the vocabu-
lary and sample different segmentations for input text during training (on-the-
fly).

• Unigram Character Noise (UCN; [AS22]): This model augments
character-level noise (with all three operations) unlike CharSpan where we
augment span level noise (with only two operations).

• BPE → Char-Span Noise: In this ablation study, we learn the vocabulary
using clean HRLs training data. Following that, we introduce character-span
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noise into the source side of HRLs. This helps us understand whether learning
a BPE vocabulary is effective in which scenario, with or without noisy HRL
training data.

• Char-Span Noise + BPE-Dropout: In this model, we train the BPE-
Dropout model with char-span noise augmented HRLs training dataset.

Evaluation Metrics

In line with recent studies on MT for ELRLs [CjCÇ+22, SBF+22], we use chrF8

[Pop15], and BLEU9 [PRWZ02d] are lexical overlap based metrics. Further, two
learned neural metrics viz., BLEURT [SDP20] and COMET [RSFL20] are used.

Implementation Details

We used the FairSeq library [OEB+19] to train proposed CharSpan and other base-
line models from scratch. The different hyper-parameter details are presented in Table
7.2. The best checkpoint was selected based on validation loss. The CharSpan model
training time for the Indo-Aryan family was approximately 8 hours; for the Romance
languages it was approximately 7 hours, and for the Malay-Polynesian, it was less
than 1 hour. For each ELRL, the zero-shot generation time was less than 5 minutes.
Due to computational limitations, the performance of the model was reported based
on a single run. During the generation process, a batch size of 64 and a beam size of
5 were used—the rest of the model parameters were set to the default values as per
FairSeq. For data-pre-processing and script conversion (for Indic languages) we use
the Indic NLP library10

7.3.3 Results and Analyses

The automated evaluation results for the CharSpan and baseline models across all
language families are presented in Tables 7.3, 7.4, 7.5 and 7.6. The following are the
major observations:
Noise vs. Baselines: All the proposed noise augmentation models outperform
vanilla NMT and all baseline models that utilize lexical similarity (i.e., OBPE,
BPE-Dropout, and SDE). This trend is consistent across all language families
and ELRLs. Moreover, existing lexical similarity-based baselines do not provide

8SacreBLEU chrF signature: nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.1
9SacreBLEU BLEU signature: nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1

10https://github.com/anoopkunchukuttan/indic_nlp_library
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Criteria Associated Values
architecture encoder-decoder (transformers)
Number of encoder layers 6
Number of decoder layers 6
Number of parameters 46,956,544 shared
learning rate (lr) 5e−4

optimizer adam
dropout rate 0.2
input size 210 tokens (both side)
epochs 15
tokens per batch 32768
clip-norm 1.0
learning rate scheduler inverse sqrt
Number of GPUs 8
type of GPU V100 Nvidia
generation batch size 64
beam size 5

Table 7.2: Model implementation and training details

Models Indo-Aryan Romance Malay-Polynesian AverageGom Bho Hne San Npi Mai Mag Awa Cat Glg Jav Sun
BPE 26.75 39.75 46.57 27.97 30.84 39.79 48.08 46.28 33.32 53.75 31.44 32.21 38.06
WordDropout 27.01 39.57 46.19 28.13 31.91 40.31 47.37 46.48 34.20 52.21 32.03 32.52 38.16
SubwordDropout 27.91 40.11 46.26 29.46 32.56 40.99 47.91 47.43 35.09 52.28 33.38 33.47 38.90
WordSwitchOut 25.17 38.81 45.87 26.21 29.95 39.69 47.53 44.54 32.98 51.81 31.84 32.49 37.24
SubwordSwitchOut 26.08 38.84 45.84 28.19 30.81 40.19 47.28 45.93 33.26 53.71 31.24 32.06 37.78
OBPE 27.90 40.57 47.46 28.52 31.99 40.71 49.10 47.16 32.33 52.77 29.98 30.88 38.28
SDE 28.01 40.91 47.88 28.66 32.03 40.82 48.96 47.30 33.72 53.95 31.84 31.24 38.77
BPE-Dropout 28.65 40.84 46.58 28.80 31.88 40.79 47.86 47.32 34.56 55.83 32.01 32.97 39.00
unigram char-noise 28.85 42.53 49.35 29.80 34.61 42.67 50.97 49.43 43.16 54.81 35.42 36.69 41.52
BPE → CSN (our) 28.66 41.94 49.48 30.49 35.66 44.75 50.55 49.21 43.11 54.89 36.12 37.11 40.16
CharSpan (our) 29.71 43.75 51.69 31.40 36.52 45.84 51.90 50.55 43.51 55.46 36.24 37.31 42.82
CharSpan + BPE-Dropout (our) 29.91 44.02 51.86 30.88 37.15 46.52 52.99 51.34 44.93 55.87 36.97 38.09 43.37

Table 7.3: Zero-shot chrF scores results for ELRLs → English MT.

Models Indo-Aryan Romance Malay-Polynesian AverageGom Bho Hne San Npi Mai Mag Awa Cat Glg Jav Sun
BPE 4.36 10.62 15.76 3.43 4.36 9.36 16.7 15.6 5.23 22.99 5.74 6.02 10.01
WordDropout 4.62 11.21 15.71 4.11 5.47 9.96 16.76 16.31 6.19 22.26 5.90 6.02 10.37
SubwordDropout 4.57 9.99 14.47 3.93 5.25 9.08 15.53 16.03 5.85 20.72 4.78 4.93 09.59
WordSwitchOut 4.03 10.75 15.86 3.56 4.92 9.91 16.85 15.54 5.27 21.97 5.95 6.35 10.08
SubwordSwitchOut 4.13 10.56 15.93 3.76 4.49 9.69 16.61 16.69 5.19 23.82 6.02 6.01 10.24
OBPE 4.65 10.62 16.31 3.63 4.95 9.18 16.88 15.69 5.03 22.91 5.33 5.81 10.08
SDE 4.77 10.69 16.21 3.66 5.42 9.86 16.80 16.03 5.47 23.51 5.88 6.39 10.39
BPE-Dropout 5.24 11.33 15.64 3.71 4.94 10.00 16.62 16.63 5.94 24.07 5.79 6.65 10.54
unigram char-noise 5.21 12.62 18.29 3.81 6.55 11.29 19.47 18.95 11.82 24.09 7.35 6.87 12.19
BPE → CSN (our) 5.39 13.06 19.00 4.48 7.01 13.17 20.30 19.69 11.91 24.27 7.51 7.30 12.75
CharSpan (our) 5.77 13.01 19.52 4.63 7.13 13.43 20.81 20.36 12.21 24.72 7.52 7.32 13.03
CharSpan + BPE-Dropout (our) 5.81 13.81 21.03 4.64 8.10 14.33 22.11 21.25 12.64 25.35 7.52 7.31 13.65

Table 7.4: Zero-shot BLEU scores results for ELRLs → English MT

any major improvement in translation quality over vanilla NMT. Possible reasons
for this can be two-fold: (1) most of the ELRLs either do not have monolin-
gual data or have small data (OBPE and SDE require large monolingual data),
and (2) we observe that in OBPE, approximately 90% of vocabulary tokens are
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Models Indo-Aryan Romance Malay-Polynesian AverageGom Bho Hne San Npi Mai Mag Awa Cat Glg Jav Sun
BPE 0.461 0.494 0.522 0.414 0.461 0.494 0.537 0.549 0.357 0.495 0.403 0.401 0.474
WordDropout 0.467 0.502 0.527 0.419 0.465 0.497 0.542 0.565 0.344 0.496 0.392 0.391 0.475
SubwordDropout 0.454 0.493 0.513 0.393 0.459 0.481 0.526 0.554 0.319 0.468 0.382 0.383 0.460
WordSwitchOut 0.456 0.501 0.528 0.395 0.445 0.497 0.552 0.551 0.309 0.477 0.381 0.381 0.464
SubwordSwitchOut 0.459 0.494 0.519 0.415 0.455 0.496 0.535 0.555 0.365 0.496 0.383 0.385 0.467
OBPE 0.466 0.496 0.518 0.419 0.459 0.491 0.537 0.551 0.431 0.428 0.396 0.381 0.464
SDE 0.486 0.499 0.515 0.511 0.496 0.542 0.543 0.553 0.440 0.481 0.406 0.405 0.489
BPE-Dropout 0.474 0.494 0.501 0.413 0.461 0.481 0.522 0.555 0.443 0.443 0.407 0.412 0.467
unigram char-noise 0.471 0.523 0.547 0.403 0.456 0.486 0.571 0.592 0.495 0.501 0.403 0.405 0.487
BPE → CSN (our) 0.469 0.528 0.553 0.400 0.459 0.491 0.579 0.595 0.499 0.511 0.405 0.413 0.491
CharSpan (our) 0.471 0.541 0.571 0.403 0.471 0.534 0.593 0.616 0.502 0.555 0.419 0.422 0.508
CharSpan + BPE-Dropout (our) 0.478 0.548 0.582 0.421 0.478 0.535 0.604 0.623 0.505 0.567 0.419 0.429 0.515

Table 7.5: Zero-shot BLEURT (computed with BLEURT-20 checkpoint) scores results for
ELRLs → English MT

Models Indo-Aryan Romance Malay-Polynesian AverageGom Bho Hne San Npi Mai Mag Awa Cat Glg Jav Sun
BPE 0.536 0.632 0.671 0.511 0.525 0.593 0.694 0.716 0.494 0.714 0.444 0.441 0.580
WordDropout 0.551 0.648 0.678 0.521 0.557 0.618 0.695 0.728 0.565 0.715 0.451 0.443 0.597
SubwordDropout 0.541 0.638 0.659 0.528 0.548 0.607 0.684 0.717 0.524 0.686 0.437 0.428 0.583
WordSwitchOut 0.544 0.647 0.681 0.522 0.563 0.621 0.706 0.719 0.529 0.702 0.453 0.452 0.594
SubwordSwitchOut 0.542 0.641 0.668 0.521 0.528 0.601 0.694 0.721 0.567 0.718 0.452 0.451 0.592
OBPE 0.541 0.629 0.667 0.504 0.527 0.589 0.691 0.715 0.492 0.721 0.363 0.611 0.587
SDE 0.549 0.636 0.666 0.513 0.529 0.591 0.697 0.735 0.513 0.731 0.357 0.618 0.594
BPE-Dropout 0.549 0.638 0.644 0.506 0.531 0.589 0.677 0.721 0.504 0.747 0.373 0.626 0.592
unigram char-noise 0.562 0.679 0.701 0.536 0.573 0.634 0.728 0.754 0.554 0.741 0.408 0.621 0.624
BPE → CSN (our) 0.557 0.676 0.706 0.542 0.581 0.651 0.724 0.755 0.561 0.751 0.403 0.622 0.627
CharSpan (our) 0.571 0.695 0.723 0.556 0.611 0.685 0.747 0.772 0.568 0.759 0.417 0.627 0.644
CharSpan + BPE-Dropout (our) 0.579 0.705 0.733 0.551 0.616 0.687 0.757 0.778 0.572 0.756 0.414 0.631 0.648

Table 7.6: Zero-shot COMET (computed with Unbabel/wmt22-comet-da model) scores
results for ELRLs → English MT

already overlapping among HRLs and ELRLs, leaving little room for learning
additional overlapping tokens. This is expected, as HRLs and LRLs are closely re-
lated. The proposed CharSpan method also outperforms general data augmentation
methods like (Sub)WordDropout and (Sub)WordSwitchout, showing its effectiveness.

Unigram vs. Char-Span Noise: We are first to explore unigram char noise [AS22]
for MT task. We see that unigram char noise is beneficial for the task. However,
our proposed CharSpan provides significant improvements over unigram character
noise. We believe our proposed data augmentation is more effective in bringing
language representations closer. It also offers performance gains for languages like
Konkani (Gom), which are distantly similar to the HRLs as other languages.

When to introduce noise? To understand when noise augmentation is effective,
we augmented noise after learning the vocabulary in the baseline (BPE → CSN).
This leads to improved performance over all baselines. This enables scalability
since augmenting noise after learning the vocabulary allows the applicability of this
method to large language models that have fixed vocabulary. However, the results
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suggest that applying noise prior to learning the vocabulary, as in CharSpan, yields
slightly better results.

Combining noise and BPE-dropout: We see that combining CSN with BPE-
dropout gives the best-performing results.

Langs. BPE Unigram Noise CharSpan Sim
Guj-Deva 34.36 36.17 38.09 0.42
Pan-Deva 29.18 33.34 36.50 0.40
Ben-Deva 25.35 28.42 30.28 0.34
Tel-Deva 23.30 24.05 24.12 0.27
Tam-Deva 13.81 13.69 14.40 0.15

Table 7.7: Zero-shot chrF scores with additional lexically less similar languages. HRL: hi
and mr; sim: lexical similarity

Performance on Less Similar Languages: We evaluate the CharSpan model’s
performance on languages that are less lexically similar to the considered HRLs and
have different scripts. The languages are Gujarati (Guj), Punjabi (Pan), Bengali
(Ben), Telugu (Tel), and Tamil (Tam). We perform script-conversion [Kun20]) of
these languages to HRL script. The training and evaluation setup is similar to the
Indo-Aryan family. Table 7.7 shows that the ELRLs, which are lexically similar to
HRLs, demonstrate a larger performance gain, while those with less lexical similarity
show limited improvement. This suggests that the model’s effectiveness is closely
tied to the lexical similarity of the languages. The lexical similarity scores for these
less similar languages are illustrated in Fig 7.6.

Impact of Cross-lingual Transfer: In this analysis, we investigate the encoded
representations of the sentences to gain insights into how performance improves with
char-span noise augmentation. We collected pooled last-layer representations of the
encoder for HRL and LRLs across all parallel test examples using BPE, unigram
char-noise (UCN), and the CharSpan models. We then calculated the average
cosine similarity scores across the test set, presented in Table 7.8. Notably, the
CharSpan model demonstrates high similarity, indicating a well-aligned embedding
space that enhanced cross-lingual transfer.

Importance of Selecting Right HRLs: Table 7.9 presents an analysis of the
impact of lexically diverse HRLs used for training. Results indicate that the
CharSpan model demonstrates a performance gain when lexically similar HRLs
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Figure 7.6: Lexical similarity heatmap for additional languages used in the analysis
section. Here we have shown similarity scores for Assamese (asm), Bengali (ben),
Gujrati (guj), Panjabi (pan), Hindi (him), Marathi (mar), Oriya (ory), Malayalam
(mal), Kannada (kan), Tamil (tam) and Telugu (tel) languages.

Models Indo-Aryan Romance Malay-Polynesian AverageBho Hne San Npi Mai Mag Awa Cat Glg Jav Sun
BPE 0.761 0.793 0.701 0.744 0.762 0.809 0.792 0.721 0.813 0.731 0.736 0.760
UCN 0.853 0.888 0.765 0.821 0.849 0.897 0.883 0.803 0.879 0.813 0.811 0.842
CharSpan 0.871 0.909 0.789 0.858 0.868 0.913 0.901 0.831 0.903 0.846 0.856 0.867

Table 7.8: Average cosine similarity between representations of source HRLs and
source ELRLs. UNC: Unigram Char-Noise

were considered for noise augmentation. When the HRLs are less lexically similar,
a degradation in performance is observed. These findings indicate the importance
of using lexically similar HRLs. The lexical similarity scores for these additional
languages are illustrated in Fig 7.6.

Model Hne Mag Mai Npi San
Training with Lexically Similar HRLs: Hin, Mar, Pan, Guj, Ben
BPE 43.04 45.08 39.51 31.92 29.29
Char-span Noise 45.89 45.82 41.67 34.40 30.34
Training with Lexically less similar HRLs: Hin, Tel, Tam, Mal, Ora
BPE 41.87 42.27 36.95 30.50 26.95
Char-span Noise 39.93 40.34 37.98 29.20 25.84

Table 7.9: Analysis experiment to show zero-shot chrF scores with lexically diverse HRLs.
Due to computational constraints, we have considered 1 million parallel data for each HRL.
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Impact of Small ELRL Parallel Data: Here, we combined small ELRL parallel
data with the HRLs training data for BPE and CharSpan model. The results
are presented in Table 7.10. The additional data boosts both model performances.
However, CharSpan still outperforms the BPE model.

Impact of Less HRL Parallel Data: For the Malay-Polynesian family, we use
only approximately 10% of the HRL parallel training data compared to the other two
language families. However, it can be observed that despite having limited training
data, the CharSpan model outperforms all the baselines and exhibits similar
performance trends as the other two language families. This conclusion suggests that
the proposed model remains effective even with a small amount of HRL training data.

Performance with Different Automated Evaluation Metrics: To ensure the
performance gains are genuine, we have evaluated the CharSpan performance using
four automated evaluation metrics. It can be observed that similar performance
trends are evident for all metrics and are correlated with each other. This indicates
the reliability of the experimental evaluation.

Setup Gom Bho Hne San Npi Mai
BPE 26.75 39.75 46.57 27.97 30.84 39.79
BPE+ELRLpar 26.54 42.66 52.52 31.88 38.09 43.22
CSN 29.71 43.75 51.69 31.40 36.52 45.84
CSN+ELRLpar 29.65 45.39 53.38 33.92 39.66 47.18

Table 7.10: Translation quality (chrF) with an additional 1000 ELRL-English parallel
sentences (ELRLpar).

7.3.4 Further Analyses and Discussions

Performance on High Resource Languages: The high-resource language
performances are presented in Table 7.11. It can be observed that, even with the
inclusion of noise augmentation, the proposed model exhibits only a slight decrease
in performance for HRLs.

Ablation Study and Different Experimental Setups: In order to ascertain the
optimal configuration of the proposed model, a comprehensive set of experiments,
numbering approximately 200, were conducted. Selected key experiments are
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XX → EN Indo-Aryan Romance Malay-Polynesian

Models BLEU chrF BLEU chrF BLEU chrF
Hin Mar Hin Mar Spa Pot Spa Pot Ind Zsm Ind Zsm

BPE 37.44 26.31 64.04 54.47 41.44 35.38 68.71 63.27 29.61 21.76 58.31 49.14

WordDropout 36.54 26.31 63.27 53.96 39.32 32.73 66.89 60.86 27.59 20.42 56.72 48.22
SubwordDropout 36.64 26.22 63.46 54.57 39.84 33.04 67.56 61.58 26.73 18.80 57.02 48.82
WordSwitchOut 34.12 23.84 60.98 51.84 35.27 30.63 63.25 58.38 27.04 19.60 55.69 46.93
SubwordSwitchOut 37.11 26.03 63.78 54.06 42.26 35.68 68.65 62.97 27.12 19.76 55.72 47.34

OBPE 37.32 26.90 64.05 55.03 41.81 36.44 68.17 63.45 28.14 21.83 57.11 49.21
SDE 37.22 26.19 63.98 55.44 41.41 35.51 68.61 62.89 29.11 21.52 58.25 48.98
BPE-Dropout 37.22 26.93 64.11 55.31 41.88 36.72 68.06 63.79 30.39 22.54 59.33 50.17

unigram char-noise 37.05 26.95 63.81 54.83 39.83 32.91 67.62 61.24 28.79 22.01 57.65 49.91
BPE → CSN (our) 36.66 26.93 63.80 54.84 39.92 32.22 66.83 61.06 27.84 22.16 57.15 50.19
CharSpan (our) 36.68 26.70 63.87 54.59 40.04 32.36 66.95 61.03 27.84 21.87 56.75 49.58
CharSpan + BPE-Dropout (our) 37.62 27.10 64.15 55.03 41.21 33.64 66.90 61.39 28.91 22.26 57.99 50.59

Table 7.11: BLEU and chrF Scores: HRLs performance for all three language families

XX → EN Indo-Aryan Romance Malay-Polynesian

Models BLEURT COMET BLEURT COMET BLEURT COMET
Hin Mar Hin Mar Spa Pot Spa Pot Ind Zsm Ind Zsm

BPE 0.775 0.726 0.891 0.857 0.769 0.720 0.871 0.830 0.687 0.561 0.821 0.701
WordDropout 0.774 0.725 0.891 0.854 0.755 0.701 0.86 0.814 0.681 0.555 0.815 0.693
SubwordDropout 0.773 0.725 0.889 0.854 0.757 0.691 0.861 0.806 0.672 0.548 0.803 0.683
WordSwitchOut 0.756 0.706 0.879 0.842 0.707 0.651 0.826 0.775 0.665 0.547 0.804 0.688
SubwordSwitchOut 0.776 0.724 0.892 0.855 0.771 0.721 0.872 0.833 0.663 0.548 0.801 0.687
OBPE 0.777 0.731 0.893 0.861 0.766 0.727 0.863 0.821 0.672 0.551 0.811 0.697
SDE 0.772 0.721 0.889 0.856 0.765 0.721 0.866 0.832 0.679 0.558 0.818 0.699
BPE-Dropout 0.773 0.727 0.891 0.858 0.772 0.7281 0.881 0.839 0.706 0.586 0.838 0.729
unigram char-noise 0.775 0.731 0.892 0.857 0.756 0.683 0.861 0.798 0.681 0.574 0.815 0.716
BPE → CSN (our) 0.773 0.728 0.891 0.857 0.755 0.685 0.861 0.801 0.685 0.581 0.821 0.724
CharSpan (our) 0.775 0.726 0.892 0.856 0.755 0.681 0.861 0.799 0.671 0.569 0.829 0.714
CharSpan + BPE-Dropout (our) 0.775 0.726 0.892 0.856 0.768 0.683 0.877 0.801 0.685 0.582 0.823 0.726

Table 7.12: BLEURT and COMET Scores: HRLs performance for all three language
families

illustrated in Table 7.13.

[Error Analysis - I] Baselines Generations are Transliterated: Fig. 7.7
presents a few sample examples where baseline models have generation errors. Here,
we particularly look for transliteration errors. It can observed that many of the
source words are directly transliterated in target generation for baseline models;
however, the proposed CharSpan model successfully mitigate these error.

[Error Analysis - II] Grammatical Well-Formedness: It is often observed that
the generations are grammatically not sound and such features are easily missed by
the performance evaluation metrics like ChrF and BLEU. With this error analysis,
we aim to investigate the grammatical well-formedness of generations from different
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Experimental Setups BLEU (XX → EN) chrF (XX → EN)
Gom Bho Hne Gom Bho Hne

char-noise (9%-11% + replacement with only vowels) 4.77 11.21 15.17 28.08 40.36 46.13
char-noise (9%-11%+ replacement with only consonants) 4.79 11.25 15.3 26.95 40.51 46.17
char-noise (9%-11% + replacement with char sound similarity ) 4.55 10.7 15.78 27.86 40.45 46.98
char-noise (9%-11% + with number and punctuation) 5.13 12.07 17.66 27.66 41.43 48.68
char-noise (9%-11% + only insertion) 5.04 12.3 17.81 27.50 41.87 48.74
char-noise (9%-11% + only replacement) 5.58 12.8 18.75 28.85 42.43 49.68
char-noise (9%-11%+ only deletion) 4.22 11.92 18.39 28.65 42.02 49.36
char-noise (4%-6% + all three operations + equal probability) 5.44 11.66 18.01 28.62 40.95 48.63
char-noise (14%-16% + all three operations + equal probability) 5.17 11.4 17.01 27.93 40.32 47.61
char-noise (9%-11% + all three operations + equal probability) 5.21 12.62 18.29 28.85 42.53 49.35
char-span noise (9%-11% + 1-3 grams + replacement: N random chars -> span ) 3.80 8.80 13.11 25.38 28.22 43.39
char-span noise (9%-11% + 1-3 grams + insertion: 1 random chars -> span ) 5.84 13.29 20.49 29.29 43.51 51.33
char-span noise (9%-11% + 1-3 grams + insertion: N random chars -> span ) 4.81 12.21 17.36 26.98 41.26 47.91
char-span noise (9%-11% + 1-3 grams + all three operations + equal probability) 4.01 10.41 16.33 27.99 36.66 46.13
char-span noise (9%-11% + 1-2 grams + replacement and deletion + equal probability) 5.42 12.08 18.02 29.17 42.21 49.17
char-span noise (9%-11% + 1-4 grams + replacement and deletion + equal probability) 5.79 11.85 18.02 29.71 42.41 49.74
char-span noise (9%-11% + 1-5 grams + replacement and deletion + equal probability) 5.56 11.36 17.06 24.13 26.35 29.55
char-span noise (9%-11%+ 1-3 grams + replacement and deletion +unequal probability ) 5.48 12.12 18.16 29.01 41.74 49.37
Proposed: char-span noise ( 9%-11% + 1-3 grams + replacement and deletion + equal probability) 5.81 13.81 21.03 29.71 43.75 51.69

Table 7.13: Ablation Study and Different Experimental Setups. Similar trends were
observed for other ELRLs and language families.

Examples   Sentence Type Source/Target/Generation

BHO to
ENG

  Source Input
  उ आगे कहलन,"हमनी ंके पास एगो 4-महीना क मूस बा जवन पिहल मधुमेह के बीमारी से �िसत रहल लेिकन अब ऊ ई बीमारी से मु�
बा"

  Reference Target   We now have 4-month-old mice that are non-diabetic that used to be diabetic," he added.

  BPE   "We have Ago 4-month-old Mous Ba Jawan Pahil, who is suffering from diabetes, but now get rid of
  the disease," "he added."

  UCN   "We had a 4-month-old daughter who was first suffering from diabetes, but now we are free from a 
  disease," "he added.

  CHARSPAN   We had 4-month-old mice that are non-diabetic, but now free from the diabetic," "he added."

HNE to
ENG

  हामी USOC को कथनसँग सहमत छौ ंिक िवघटन भ�ा ब� हा�ा ए��लट र �बह�को िहत र ितनीह�को खेल सायद हा�ो स� िभ�
अथ�पूण�     प�रवत�नको साथ अिघ बढेर अझ रा�ो सेवा िदन सिक�छ।

  We agree with the USOC's statement that the interests of our athletes and clubs, and their sport, may be 
  better served by moving forward with meaningful change within our organization, rather than decertification.

  Hami agreed to the USOC that dissolution Bhanda Baru Hamra Ethlite Club interested in Tiniharuko Play
  Syed Hamro Bhitra meaningful changes along with Ah Ramro Service Day Sakinch.

  Hami agrees with the USOC that dissolution Bhanda Baru Hamra Athlete Club Bahruko interested in
  Tinihruko Games Sayyid Hamro Sangha Change with Azhi Ramro Seva Day Sakinch.

  We agreed with the USOC that the dissolution would be in the interest of athletes and clubs, and their sport
  and grow a friendly, meaningful transformation and celebrate rather than decertification in organization.

  Source Input

  Reference Target

  BPE

  UCN

  CHARSPAN

Figure 7.7: The generation errors (transliteration) from different baseline models.
The proposed CharSpan model successfully mitigates those errors. Colors indicate
the corresponding transliteration in a generation.

baseline models. To score the grammatical well-formedness, we use L’AMBRE tool11.
The results are reported in Table 7.14. For simplicity, we have shown results for only
the Indo-Aryan family. The CharSpan shows better Well-Formedness than BPE
and Unigram char-noise model across all considered ELRLs.

11https://github.com/adithya7/lambre
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These error analyses further provide evidence that the performance gains are truly
genuine for the CharSpan model.

Models Indo-Aryan
Bho Hne San Npi Mai Mag Awa

BPE 0.9782 0.9813 0.9444 0.9624 0.9647 0.9784 0.9812
UCN 0.9754 0.9616 0.9504 0.9592 0.947 0.9708 0.9753
CharSpan 0.9856 0.9865 0.9658 0.9735 0.9802 0.9842 0.9836

Table 7.14: Grammatical Well-Formedness for different models with L’AMBRE

7.3.5 Summary

To summarize, this study presents a simple yet effective novel character-span noise
(CSN) argumentation model, CharSpan, to facilitate better cross-lingual transfer
from HRLs to closely related ELRLs. The approach generalizes to closely related
HRL-ELRL pairs from three typologically diverse language families. The proposed
model consistently outperformed all the baselines. To the best of our knowledge, we
are the first to apply noise augmentation for the NLG task. The CharSpan model
emerged as a state-of-the-art model for ELRLs to English MT task.

7.4 Selective Character Noise Augmentation

7.4.1 Methodology

Source HRL 

HRL

                   

Learn Vocabulary 

Transformers
Encoder

Transformers
Decoder

Source Noisy HRL 

Target HRL 

Source ELRL

Zero-shot Generation in Target  

(a) Model Training (b) Model Inference

Trained Model (M')

Selective Character Candidate Pool: 

BPE Merge
Operations

BPE Merge
Operations

Extraction of Edit-operations 

Candidate Sampling: Greedy, Top-k, Top-p 

                   
Transformers

Encoder

Transformers
Decoder

ELRL 2 - hne

ELRL n - awa

...

ELRL 1 - bho
Closely Related

Figure 7.8: Overview of the proposed selective noise augmentation-based model for
extremely low-resource MT.
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In this section, we present the details of our second proposed model, SelectNoise.
In SelectNoise, the noise augmentation candidates are extracted through an un-
supervised approach. Specifically, we consider a small monolingual dataset for HRL,
denoted as DH, as well as related (lexically similar) LRLs, denoted as DL. During the
process of building the Byte Pair Encoding (BPE) vocabulary, we extract the BPE op-
erations separately for the HRL (BH) and ELRLs (BL). Generally, BL comprises small
monolingual datasets from multiple extremely ELRLs. Next, we design an algorithm
A to extract selective candidates SC from BH and BL, inspired by an edit-operation
approach. In other words, we obtain SC as a result of A (BH, BL). These selective can-
didates SC are augmented into the source sentences of HRL corpus (H) from the large
parallel dataset PH = {(h, e)|lang(h) = H, lang(e) = En} using a noising mechanism
η, resulting in a noise augmented dataset P̂H = {(ĥ, e)|lang(ĥ) = Ĥ, lang(e) = En},
where Ĥ = η(H). We train the stranded encoder-decoder transformer model (M;
[VSP+17]) from scratch with Ĥ and obtained and trained model M̂. Finally, zero-
shot evaluation is done for ELRLs with M̂. In the next subsections, we will deep dive
into each component of the proposed model, which includes unsupervised selective
candidate extraction based on edit operations and BPE merge operations, candidate
noise augmentation approach based on a sampling strategy, model training, and zero-
shot evaluation. The overview of the proposed approach is depicted in Figure 7.8.
In this work, we investigate two hypotheses: (a) the selective noise augmentation
strategy is expected to outperform random noise augmentation, and (b) the perfor-
mance of the unsupervised noise augmentation model should be comparable to that of
the supervised noise augmentation model that utilizes parallel data.

Unsupervised Noise Augmentation

The formal procedure for unsupervised noise augmentation is presented in Algorithm
3. In the next subsections, we will dive deep into each stage of the proposed model
in detail:

Selective Candidate Extraction: The first stage in the proposed approach in-
volves extracting candidate characters that will subsequently be utilized for noise
augmentation. Given DH and DL, we extract all BPE merge operations BH and BL,
respectively. Each merge operation consists of tuples ⟨(p, q)⟩ ∈ BH and ⟨(r, s)⟩ ∈ BH.
We pair each merge tuple of BH with each tuple of BL (i.e., cartesian setup). If BH

and BL have n and m merge operations, respectively, we obtain a total of t = m · n
pairs. We consider only those pairs where either p and r or q and s are the same
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Algorithm 3 SelectNoise: Unsupervised Noise Augmentation
Require: [Inputs] HRL monolingual data DH; closely related ELRLs monolingual data

DL; number of merge operations MO; HRL parallel data PH(H, En); Noise augmenta-
tion percentage range [p1% - p2%]; candidate sampling strategy SM; ExtractSelec-
tiveCands (A)

Ensure: [Output] Noisy source HRL Ĥ
1: Sc = ExtractSelectiveCands(DH,DL,MO)
2: for sentence s in H do
3: idxs ← randomly select [p1% - p2%] indices of s
4: for idx in idxs do
5: ops ← randomly sample operation {insert, delete, substitute}
6: if ops equals delete then
7: Remove character at index idx
8: end if
9: if ops equals Insert or ops equals substitute then
10: c = sample candidate char, i.e., SM(Sc, ops)
11: Perform operation ops at index idx with c
12: end if
13: end for
14: end for
1: procedure ExtractSelectiveCands(DH,DL,MO)
2: Initialize candidate pool Sc ← ∅ to store candidates
3: Compute merge operations BH = BPE(DH, MO)
4: Compute merge operations BL = BPE(DL, MO)
5: for n in BH do
6: for m in BL do
7: if n equals m or (p not equals r and q not equals s) then
8: ▷ where n = tuple ⟨(p, q)⟩, m = tuple ⟨(r, s)⟩
9: No operation is performed with n and m
10: else if p equals r then
11: Compute edit-operations(q, s) & update Sc

12: else if q equals s then
13: Compute edit-operations(p, r) & update Sc

14: end if
15: end for
16: end for
17: return Sc

18: end procedure

while discarding the rest. For the considered tuples ⟨(p, q), (r, s)⟩, we calculate the
character-level edit-distance operations between non-similar elements of the tuple.
For instance, if p and r are the same, the edit operations are obtained using q and
s elements. These operations are collected in the candidate pool Sc, which includes
insertions, deletions, and substitutions, and are referred to as the selective candidates.
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As discussed, the extracted selective candidates are stored in the candidate pool
Sc, a dictionary data structure encompassing HRL and ELRL characters. The Sc
consists of HRL characters, ELRL characters, edit operations, and their respective
frequencies. An element of Sc has following template: ci : {I : fins, D : fdel, S :

{c′1 : f1, c
′
2 : f2, c

′
k : fk}}. The operations are: insertion (I), deletion (D) and

substitution (S). The character ci represents the ith element of Sc, which is an HRL
character, c′1 . . . c′k denote the corresponding substituting candidates from ELRLs and
f is the associated frequencies. A few examples of selective candidate extraction are
illustrated in Fig. 7.9. Sample candidate pool (Sc) is shown in Fig. 7.10.

Today is Monday

आज सोमवार हे
Let's go on Monday

चली ंसोमार का िदने चलल जाव

म��ने उसे सोमवार को देखा था
Tomorrow is Monday

TV has turned off

का� सोमार के िदन बा
I saw him on Monday

टीबी बंद हो गईल

('ट', '◌ीवी')
('◌ैज', '◌्ञािनको'ं)
('ह', '◌ँू')
('◌्', 'य')

('ट', '◌ीबी')
('◌ैज', '◌्ञािनक')
('ह', '◌ो')
('◌्य', 'य')

The study of scientists is progress.

वै�ािनको ंका अ�ायन �गित है 

वै�ािनक लोग के अ�यन संुदर बाटे 
The studies of scientists are beautiful.

... ...

... ...

...

...

Hindi Bhojpuri

'व'  : {I:0,D:0,S: {'ब': 1, ...}}

' ो'  : {I:0,D:1,S:{..}}

'◌ँू' : {I:0,D:1,S:{' ◌ो':1}}

Merge operations Extracted edit operations
...

Hindi corpus Bhojpuri corpus

'य'  : {I:1,D:0,S:{..}}

I am watching TV

म� टीवी देख रहा �ँ

' ं'   : {I:0,D:1,S: {..}}

...
...

...

Figure 7.9: Illustration of selective candidates extraction for noise augmentation that
utilizes BPE merge and edit operations. Here I, D, and S indicate insertion, deletion,
and substitution respectively. Frequencies are associated with operations. 0 indicates
the corresponding edit operation was not extracted.

Intuitively, with this candidate pool Sc, we have learned transformative entities that
can be used to resemble an HRL to lexically similar ELRLs, which results in bridging
the lexical gap between HRL and LRLs. Training with such modified HRL data
enhances the effectiveness of cross-lingual transfer signals for ELRLs. As candidates
are extracted by considering the vocabulary word-formation s‘trategy from BPE and
edit operations, they indirectly consider the linguistic cues/information.

Noise augmentation to HRL: In the second stage, we sample selective candidates
from Sc and augment into the source sentences of HRL corpus (H) from the par-
allel dataset PH = {(h, e)|lang(h) = H, lang(e) = En} using a noise function η,
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Few Sample Elements of Candidate Pool 

'◌्':{'I':62,'D':1561,'S':{'ह': 1482,...}}

'र':{'I':92,'D':97,'S':{'◌ा':1482,...}}

'ि◌':{'I':1552,'D':15,'S':{'य':397,...}}

'ऽ': {'I': 0,'D': 33, 'S': {}}

{

}

{

         : {'I': , 'D': , 'S': { : , : , ... }},      

         : {'I': , 'D': , 'S': { : , : ,... }},

         : {'I': , 'D': , 'S': { : , : , ... }}

         : {'I': , 'D': , 'S': { : , E3: , ... }}

}

Candidate Pool  Template

...
...

Figure 7.10: Top is a template for the character candidate pool Sc. The operations
are: insertion (I), deletion (D) and substitution (S). The character ci represents
the ith element of Sc, which is an HRL character, c′1 . . . c′k denote the corresponding
substituting candidates from ELRLs and f is the associated frequencies. The Bottom
shows a few sample elements of the Sc.

resulting in a noise augmented (augmented) parallel dataset P̂H = {(ĥ, e)|lang(ĥ) =
Ĥ, lang(e) = En}, where Ĥ = η(H). Details of the noise function and candidate
sampling strategy are presented below:

• Noise Function: The noise augmentation function (η) is designed as follows:
Initially, we randomly select 5%-10%12 of character indices from a sentence
s ∈ H. Subsequently, we uniformly choose between insertion, deletion, or sub-
stitution operations with equal probability. If the selected operation is insertion
or substitution, we sample a candidate character from Sc to perform the noise
augmentation operation. For deletion, the charter is simply deleted. These
steps are repeated for all sentences in H to obtain the final Ĥ.

• Candidate Character Sampling: While noise augmentation for deletion
operation, we simply delete the character. For insertion and substitution, we
sample the candidate character for augmentation from Sc using the greedy, top-p
(nucleus), and top-k sampling techniques inspired by decoding algorithms com-

12after conducting several ablation experiments, this range provides the best performance

144



monly employed in NLG [HBFC19]. Before applying these sampling techniques,
the frequencies of the candidate characters are transformed into probability
scores using the softmax operation. Intuitively, with the sampling technique,
we aim to explore not only frequent candidate characters but also diverse can-
didates.

The performance of any learning model depends on the quality of the training data.
The presence of noise hampers the learning, and the outputs of the learned model
exhibit the different nuances of the noise present in the data. In our specific case: (i)
We train a model using data that contains noise, resulting in the model’s increased
robustness to minor lexical variations in different languages, particularly those related
to ELRLs. (ii) The noise is added for a small portion of characters (5-10%), making
the HRLs training data closely resemble how sentences appear in ELRLs. As a result,
the model is able to do a robust cross-lingual transfer to the ELRL in a zero-shot
setting. In another perspective, the augmentation of noise acts as a regularizer [AS22],
contributing to an overall enhancement in the model’s performance.

Supervised Noise augmentation

We have also investigated in a supervised setting akin to the proposed SelectNoise
approach. The key distinction lies in how the candidate pool Ssc is derived from a
limited parallel dataset between HRL and ELRLs. For each HRL and ELRL pair, we
extract a candidate set using edit operations and subsequently combine all the candi-
date sets in Ssc. The rest of the modeling steps are similar to the SelectNoise. We
hypothesize that the unsupervised method should exhibit competitive performance
compared to the supervised approach. In the supervised candidate extraction, we
assume the availability of a limited amount of parallel data of approximately 1000
examples. A formal algorithm outlining in the Algorithm 4.

Model Training and Zero-shot Evaluation

The stranded encoder-decoder transformers model (M) is trained from scratch us-
ing the noisy high-resource parallel dataset P̂H and V to obtain a trained model
M̂. Where V is learned BPE vocabulary with P̂H. Subsequently, we use M̂ to per-
form zero-shot generation for ELRLs. We have not used any parallel training data
for ELRLs and directly employ M̂ for inference, making this modeling setup zero-
shot. The trained model transfers knowledge across languages, enabling coherent and
meaningful translation for ELRLs.
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Algorithm 4 Supervised Noise Augmentation
Require: [Inputs] joint parallel data for all considered HRL-ELRL pairs PS(S, EL); HRL

parallel data PH(H, En); noise augmentation percentage range [p1% - p2%]; candidate
sampling strategy SM

Ensure: [Output] Noisy source HRL Ĥ
1: Ssc = SupExtractSelectiveCands(PS)
2: for sentence s in H do
3: idxs ← randomly select [p1% - p2%] indices of s
4: for idx in idxs do
5: ops ← randomly sample operation {insert, delete substitute}
6: if ops equals delete then
7: Remove character at index idx
8: end if
9: if ops equals Insert or ops equals substitute then
10: c = sample candidate char, i.e., SM(Ssc, ops)
11: Perform operation ops at index idx with c
12: end if
13: end for
14: end for
15: procedure SupExtractSelectiveCands(PS)
16: Initialize candidate pool Ssc ← ∅ to store candidates
17: for each ⟨(s, e)⟩ in PS do
18: Compute edit-operations(s, e) & update Ssc

19: end for
20: return Ssc

21: end procedure

7.4.2 Experimental Setup

We designed our experimental setup to address the following set of questions: (1)
Does noise augmentation improve performance for NLG tasks, i.e., MT in our case?
(2) Does selective noise augmentation with the proposed SelectNoise model out-
perform the random noise augmentation model [AS22]? (3) Does the model’s perfor-
mance persist across different language families? and (4) Does the unsupervised Se-
lectNoise model demonstrate competitive performance with supervised approach?
Based on these research questions, we have designed our experimental setup. As the
CharSpan is closely related work, for clarity, some experimental setup is repeated,
and readers are suggested to skip to those sections.

Datasets

The primary constraint of the proposed approach is to select closely related HRLs
and ELRLs. With this criterion in mind, we have chosen two language families: Indo-
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ELRL/HRL-Pair ISO-3 Code Language Family Train Valid Test HRL Source
Bhojpuri Bho Indo-Aryan - 997 1012 hi FLORES-200
Magahi Mag Indo-Aryan - 997 1012 hi FLORES-200
Maithili Mai Indo-Aryan - 997 1012 hi FLORES-200
Nepali Npi Indo-Aryan - 997 1012 hi FLORES-200
Awadhi Awa Indo-Aryan - 997 1012 hi FLORES-200
Sanskrit San Indo-Aryan - 997 1012 hi FLORES-200
Kashmiris Kas Indo-Aryan - 997 1012 hi FLORES-200
Chhattisgarhi Hne Indo-Aryan - 997 1012 hi FLORES-200
Asturian Ast Romance - 997 1012 es FLORES-200
Catalan Cat Romance - 997 1012 es FLORES-200
Galician Glg Romance - 997 1012 es FLORES-200
Occitan Oci Romance - 997 1012 es FLORES-200
Hindi-English hi-en Indo-Aryan 10.1M 997 1012 - [RDB+22]
Spanish-English es-en Romance 6.6M 997 1012 - [Rap21]

Table 7.15: Statistics of the language and data used in SelectNoise model

Aryan and Romance. Within the Indo-Aryan family, we have selected Hindi (Hi) as
the HRL and 8 ELRLs were Awadhi (Awa), Bhojpuri (Bho), Chhattisgarhi (Hne),
Kashmiri (Kas), Magahi (Mag), Maithili (Mai), Nepali (Npi), and Sanskrit (San),
based on their lexical similarity. For the Romance family, Spanish (Es) served as
the HRL, and the 4 ELRLs were Asturian (Ast), Catalan (Cat), Galician (Glg), and
Occitan (Oci). We conducted separate experiments for each language family, training
the model with the HRL to English MT task and evaluating it in a zero-shot setting
with corresponding ELRLs.
In total, we have 3 HRLs (English, Hindi, and Spanish) and 12 ELRLs. All the test
datasets are sourced from FLORES-200 [CjCÇ+22], while the hi-en dataset is ob-
tained from AI4Bharat [RDB+22], and the es-en dataset is from Rapp et al. [Rap21].
The development set of FLORES-200 was utilized as a parallel dataset for supervised
noise augmentation. A small amount of monolingual data was used for SelectNoise
and other baseline methods. Here, we used 1000 examples for each ELRL. Detailed
dataset statistics and data sources are presented in Table 7.15. Fig. 7.11, we provide
an overview of the lexical similarity between HRLs and ELRLs.

Baselines

We compare the SelectNoise model with several strong baselines, including a tra-
ditional data augmentation model, lexical similarity-based models, and a model based
on random noise augmentation. Details of each baseline are presented below:

• Vanilla NMT: [SHB16b] A standard transformer-based NMT model with
BPE algorithm .
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(a)

(b)

Figure 7.11: Lexical similarity heatmap between HRL and its related ELRLs. Fig.
(a) depicts a similarity score for the Indo-Aryan family where HRL is Hindi. Fig.
(b) depicts a similarity score for the Romance family where HRL is Spanish. Note:
Darker color denotes high lexical similarity.

• Word-drop [SHB16a]: In this baseline, the embeddings of randomly selected
10% words in the source sentences of HRL to 0. The rest of the steps are similar
to the SelectNoise model.

• BPE-drop: This approach is similar to the word-drop baseline but uses BPE
tokens instead of words.

• SwitchOut [WPDN18]: This baseline employs a data augmentation tech-
nique where random words in both the source and target sentences are replaced
with randomly selected words from their respective vocabularies. We have uti-
lized the officially released implementation with a 10% word replacement rate.

• OBPE [PTS22]: The approach modifies the BPE algorithm to encourage more
shared tokens from HRLs and LRLs in the vocabulary. This model required a
monolingual dataset for LRLs. We use a small monolingual dataset, based on
availability, for the ELRLs. Earlier work applied OBPE for NLU tasks only -
we are the first to investigate it for MT.

• BPE Dropout [PEV20]: It is based on the BPE algorithm to learn the
vocabulary and generates non-deterministic segmentations for input text on-
the-fly during training. We use a dropout value of 0.1.

• Random Char Noise [AS22]: This baseline methodology is similar to the
proposed SelectNoise approach; but, noise augmentations are done ran-
domly.
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Evaluation Metrics

All the model performances are compared using both automated and human evalua-
tion metrics. In line with recent research on MT for LRLs, we employ two types of
automated evaluation metrics [CjCÇ+22, SBF+22]. Specifically, lexical match-based
metrics: BLEU [PRWZ02d] and chrF [Pop15] and learning-based metrics: BLEURT
[SDP20] and COMET [PCP+21].
We further conducted the human evaluation to ensure the reliability of the perfor-
mance gain. Three languages from the Indo-Aryan family ( Bhojpuri, Nepali, and
Sanskrit) were selected based on their high, moderate, and low lexical similarity with
the HRL (Hindi). To manage the annotators’ workload effectively, we limited our
evaluation to three models: Vanilla NMT, BPE Dropout, and SelectNoise. For
each language, the human evaluation set consisted of 24 examples, and translations
were obtained from above mentioned three models. Two annotators were employed for
each language to ensure the inter-annotator agreement, and two ratings were obtained
for each example from these annotators. All annotators held at least a master’s de-
gree, were native speakers of the respective language and demonstrated proficiency in
English. We use Crosslingual Semantic Text Similarity (XSTS) metric [ACDGA12],
which is widely adopted in the MT research for human evaluation. The XSTS met-
ric employs a 1-5 evaluation scale, where 1 represents a very bad translation and 5
represents a very good translation.

Implementation Details

Our vanilla NMT model is based on standard transformer architecture consisting of
6 encoder and decoder layers. We trained our model for a maximum epoch of 15. We
use Adam [KB15] optimizer with β1 = 0.9 and β2 = 0.98. We set a learning rate of
0.0005. We use a dropout of 0.2. We performed data normalization and preprocessing
using IndicNLP library13. We perform our experiments using fairseq14 library. For
evaluation we use the lexical match-based BLEU metric15 [PRWZ02d], chrF16 [Pop15]
metric, semantic-based BLEURT17 [SDP20], and COMET18 [PCP+21] metrics.

13https://github.com/anoopkunchukuttan/indic_nlp_library
14https://github.com/pytorch/fairseq
15nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1
16nrefs:1|case:mixed|eff:yes|nc:6|nw:0|space:no|version:2.3.1
17Reported using BLEURT20 checkpoint
18Reported using wmt22-comet-da model
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7.4.3 Results and Discussions

Models Indo-Aryan Romance AverageBho Hne San Mai Mag Awa Npi Kas Cat Glg Ast Oci
Vanilla NMT 40.3 46.8 22.3 40.0 49.3 47.6 29.6 21.3 33.0 41.0 40.7 33.0 37.08
Word-drop 39.5 47.2 21.8 40.6 49.0 47.6 28.6 20.6 37.6 43.6 43.4 36.0 37.96
BPE-drop 39.1 46.8 22.6 40.4 48.7 46.7 29.2 21.1 33.8 41.7 41.5 33.0 37.05
SwitchOut 36.1 43.2 20.1 38.2 45.6 42.7 28.3 18.8 29.0 34.9 34.9 29.1 33.41
OBPE 41.3 47.5 23.4 41.8 50.4 49.7 30.5 21.1 34.1 41.2 41.3 33.8 38.00
BPE-Dropout 39.8 47.4 22.5 39.9 49.6 47.7 29.3 21.2 33.2 40.8 41.4 33.0 37.15
Random Char Noise 40.9 48.4 23.8 40.8 50.0 47.5 31.2 21.9 40.9 46.1 46.4 38.2 39.68

SelectNoise Model
SelectNoise + Greedy 42.1 51.0 25.2 43.4 51.7 49.9 33.4 23.7 42.0 47.1 47.4 38.5 41.28
SelectNoise + Top-k 42.4 49.9 26.0 43.0 51.0 48.8 33.4 23.3 41.5 47.1 47.8 38.5 41.06
SelectNoise + Top-p 42.0 49.6 24.1 42.4 50.6 48.8 33.6 23.3 41.6 47.1 47.5 38.8 40.78

Supervised Noise augmentation Model
Selective noise + Greedy 41.4 49.1 25.4 42.2 50.1 48.7 32.9 22.2 41.6 47.2 47.7 38.7 40.60
Selective noise + Top-k 41.7 49.3 26.3 43.3 50.8 48.7 34.2 23.6 41.9 46.8 47.5 38.7 41.10
Selective noise + Top-p 41.4 49.9 27.3 43.3 51.6 48.9 33.9 23.4 41.6 47.7 48.2 39.0 41.35

Table 7.16: Zero-shot chrF (↑) scores results for ELRLs → English

Models Indo-Aryan Romance AverageBho Hne San Mai Mag Awa Npi Kas Cat Glg Ast Oci
Vanilla NMT 11.1 17.2 2.7 10.1 18.5 18.3 5.1 2.6 5.3 10.1 12.3 5.2 9.86
Word-drop 8.7 13.7 1.9 7.7 15.2 16.1 3.0 1.6 6.9 10.7 13.3 6.5 8.76
BPE-drop 10.8 16.1 2.7 10.0 17.2 17.8 4.0 2.1 5.1 9.1 11.2 4.7 9.23
SwitchOut 4.3 7.7 1.4 4.9 8.4 7.9 2.9 1.2 3.5 6.3 8.2 3.8 5.04
OBPE 11.1 16.6 2.9 10.4 18.7 19.7 4.8 1.9 6.2 10.7 12.9 6.1 10.16
BPE-Dropout 11.6 17.5 3.1 10.1 19.3 18.3 5.4 2.5 5.4 10.1 13.0 5.4 10.14
Random Char Noise 12.8 18.8 3.1 10.2 19.4 18.6 6.3 2.9 10.9 14.3 17.2 8.7 11.93

SelectNoise Model
SelectNoise + Greedy 12.5 20.1 3.7 11.9 21.2 20.2 7.1 3.0 10.8 15.0 17.4 9.0 12.66
SelectNoise + Top-k 12.3 19.7 3.8 12.0 20.2 19.5 7.2 2.8 10.5 15.0 17.5 8.8 12.44
SelectNoise + Top-p 12.7 19.5 3.8 11.9 20.3 19.6 6.7 3.2 10.7 14.8 17.1 8.9 12.43

Supervised Noise augmentation Model
Selective noise + Greedy 13.1 19.5 4.0 11.8 19.6 19.3 6.8 2.4 10.5 15.0 17.9 8.9 12.4
Selective noise + Top-k 12.7 19.1 3.9 12.2 20.1 19.3 7.0 2.9 10.8 15.0 17.4 8.9 12.44
Selective noise + Top-p 12.7 20.0 4.1 12.6 21.2 19.7 7.0 2.7 10.5 15.4 18.1 9.1 12.76

Table 7.17: Zero-shot BLEU (↑) scores results for ELRLs → English

Models Indo-Aryan Romance AverageBho Hne San Mai Mag Awa Npi Kas Cat Glg Ast Oci
Vanilla NMT 0.500 0.531 0.368 0.500 0.559 0.576 0.435 0.377 0.295 0.390 0.406 0.232 0.431
Word-drop 0.497 0.533 0.357 0.498 0.551 0.563 0.417 0.353 0.361 0.440 0.454 0.312 0.445
BPE-drop 0.506 0.537 0.367 0.509 0.557 0.572 0.422 0.363 0.316 0.415 0.432 0.283 0.440
SwitchOut 0.411 0.446 0.318 0.415 0.467 0.466 0.38 0.335 0.278 0.337 0.347 0.262 0.372
OBPE 0.502 0.525 0.371 0.502 0.561 0.583 0.436 0.381 0.306 0.404 0.416 0.266 0.438
BPE-Dropout 0.501 0.526 0.371 0.497 0.558 0.574 0.439 0.393 0.300 0.389 0.410 0.231 0.432
Random Char Noise 0.521 0.547 0.371 0.501 0.569 0.584 0.441 0.380 0.391 0.487 0.491 0.319 0.467

SelectNoise Model
SelectNoise + Greedy 0.525 0.563 0.386 0.511 0.578 0.606 0.458 0.394 0.392 0.499 0.511 0.319 0.478
SelectNoise + Top-k 0.524 0.558 0.386 0.507 0.576 0.599 0.454 0.388 0.400 0.497 0.516 0.321 0.477
SelectNoise + Top-p 0.527 0.599 0.372 0.505 0.573 0.599 0.457 0.391 0.399 0.501 0.509 0.321 0.479

Supervised Noise augmentation Model
Selective noise + Greedy 0.527 0.560 0.389 0.507 0.572 0.600 0.451 0.381 0.392 0.499 0.511 0.319 0.476
Selective noise + Top-k 0.526 0.549 0.401 0.509 0.573 0.463 0.463 0.390 0.400 0.494 0.506 0.326 0.467
Selective noise + Top-p 0.524 0.558 0.400 0.510 0.584 0.455 0.455 0.386 0.391 0.501 0.512 0.321 0.466

Table 7.18: Zero-shot BLEURT (↑) scores results for ELRLs → English

In this section, we will discuss results, observations and findings. The zero-shot
automated evaluation scores are presented in Tables 7.16, 7.17, 7.18 and 7.19. The
results are reported with greedy, top k (k = 50), and top-p (p = 0.25) sampling
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Models Indo-Aryan Romance AverageBho Hne San Mai Mag Awa Npi Kas Cat Glg Ast Oci
Vanilla NMT 0.642 0.676 0.471 0.621 0.711 0.736 0.542 0.387 0.499 0.534 0.497 0.408 0.560
Word-drop 0.659 0.702 0.494 0.650 0.725 0.747 0.564 0.409 0.484 0.551 0.538 0.421 0.579
BPE-drop 0.653 0.687 0.497 0.645 0.711 0.732 0.554 0.400 0.438 0.515 0.505 0.389 0.560
SwitchOut 0.565 0.605 0.462 0.564 0.626 0.632 0.533 0.394 0.405 0.461 0.445 0.362 0.504
OBPE 0.664 0.676 0.452 0.630 0.707 0.740 0.544 0.392 0.456 0.524 0.501 0.400 0.557
BPE-Dropout 0.644 0.672 0.471 0.616 0.710 0.733 0.537 0.381 0.503 0.534 0.500 0.411 0.559
Random Char Noise 0.673 0.700 0.492 0.641 0.725 0.746 0.559 0.401 0.522 0.610 0.584 0.441 0.591

SelectNoise Model
SelectNoise + Greedy 0.672 0.714 0.493 0.647 0.735 0.765 0.575 0.412 0.523 0.620 0.598 0.434 0.599
SelectNoise + Top-k 0.678 0.708 0.504 0.649 0.730 0.758 0.585 0.419 0.524 0.621 0.603 0.438 0.601
SelectNoise + Top-p 0.677 0.559 0.502 0.643 0.730 0.758 0.586 0.411 0.526 0.625 0.600 0.442 0.588

Supervised Noise augmentation Model
Selective noise + Greedy 0.681 0.711 0.505 0.649 0.728 0.761 0.582 0.411 0.522 0.618 0.603 0.441 0.601
Selective noise + Top-k 0.677 0.700 0.506 0.655 0.703 0.757 0.581 0.414 0.522 0.623 0.605 0.439 0.598
Selective noise + Top-p 0.680 0.708 0.511 0.655 0.738 0.756 0.589 0.414 0.522 0.623 0.605 0.439 0.603

Table 7.19: Zero-shot COMET (↑) scores results for ELRLs → English

Models ELRLs
Bho San Npi

Annotator set-1
Vanilla NMT 3.54 2.42 2.21
BPE Dropout 3.29 2.37 1.83
SelectNoise 4.17 2.83 2.50

Annotator set-2
Vanilla NMT 3.42 1.96 2.17
BPE Dropout 2.79 1.83 1.96
SelectNoise 3.54 2.17 2.21

Table 7.20: Human evaluation scores with XSTS metrics

strategies. Table 7.20 presents the human evaluation results.

SelectNoise vs. Baselines: The proposed and other models that incorporate lexi-
cal similarity have demonstrated superior performance compared to the Vanilla NMT
model. While general data augmentation techniques like Word-drop and SwitchOut
exhibit performance similar to the Vanilla NMT model, they perform poorly when
compared to OBPE and BPE-Dropout models. These results indicate the importance
of considering monolingual data from ELRLs in the modeling However, random
noise augmentation and the SelectNoise approach outperform the OBPE and
BPE-Dropout models, indicating the effectiveness of noise augmentation-based
modeling techniques. In conclusion, the careful selection of noise candidates, as done
in the SelectNoise approach, has outperformed the random noise model (second
best) and emerged as the state-of-the-art model.

Selective vs. Random Noise Augmentation: Unsupervised selective noise
augmentation approaches exhibit a larger performance gain compared to the random
noise augmentation model. This observation emphasizes the importance of a
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systematic selective candidate extraction and noise augmentation process.

Lexical vs. Learned Evaluation Metrics: We observe a strong correlation
between lexical match-based metrics, such as BLEU and chrF scores. Further,
semantic-based metrics like BLEURT and COMET exhibit similar trends to lexical
match metrics, indicating a high level of correlation. This emphasizes the reliability
of evaluation scores.

Automated vs. Human Evaluation: The proposed SelectNoise model
outperforms both baselines in human evaluation across all three languages. The
model demonstrates acceptable zero-shot performance for ELRLs, with a strong
correlation with automated evaluation scores.

Performance across Language Families: Unsupervised selective noise augmen-
tation consistently outperforms all the baselines across ELRLs, with few exceptions.
The model exhibits similar performance trends across both language families.

Unsupervised vs. Supervised Noise augmentation: The unsupervised
SelectNoise model performs comparably to the supervised model, with slight
variations depending on the language and family. The performance gap between the
two models is minimal, indicating their equal strength.

Performance vs. Sampling Strategies: The performance with different sampling
techniques is compared, and it is observed that the greedy approach for Select-
Noise performs better for the majority of languages. This finding indicates the
existence of one-to-one lexical mapping across HRL and ELRLs. However, other
sampling approaches are also effective for a subset of ELRLs.

Overall Performance: As we can observe from the average automated evaluation
scores, the proposed SelectNoise model outperforms all the baselines by a signifi-
cant margin. It also exhibits comparable performance to the supervised model, and
this performance persists across different language families. These findings satisfy
our hypothesis, leading us to conclude that the proposed SelectNoise model is a
state-of-the-art model for English-to-ELRLs MT systems.
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Further Analyses

In this section, we perform a detailed analysis with SelectNoise to understand
factors contributing to performance gain and analyze robustness.

Performance Trend with Top-k and Top-p: In Figure 7.12, the performance
trend of the proposed model with varying values of k and p for top-p and top-k
sampling is depicted. The candidate pool consists of a maximum of 61 characters
(a range for k-value selection). The model performs best with a k-value of 50 and
a p-value of 0.25, offering valuable insights for optimizing its performance through
parameter selection.
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Figure 7.12: Performance trends of the proposed model with various k and p values
from top-k and top-p sampling, respectively.

Impact of Monolingual data size: The proposed SelectNoise model relies
on the small monolingual dataset of ELRLs. We investigate the impact of a large
monolingual dataset on the model’s performance for ELRLs. Table 7.21 demonstrates
that a larger dataset leads to a performance boost, suggesting the extraction of more
meaningful noise augmentation candidates.

Language similarity Vs. Performance: Figure 7.13 illustrates the comparative
trend of lexical similarity score between ELRLs and HRLs and performance (ChrF
score). It can be observed that lexically similar languages boost the model’s
performance, leading to an improved cross-lingual transfer for the SelectNoise
model. For example, languages like Kashmiri (kas), which have the lowest similarity,
exhibit the lowest performance, whereas Chhattisgarhi (hne), with the highest lexical
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ELRLs Data size BLEU chrF

Hne 997 19.5 49.6
6000 20.3 50.3

Mai 997 11.9 42.4
6000 12.4 43.2

Npi 997 6.7 33.6
6000 7.2 33.8

Table 7.21: SelectNoise Model performance with larger monolingual data

similarity, demonstrates the highest performance.
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Figure 7.13: Language similarity vs. Performance.

Performance with Less Related Languages: We evaluate the zero-shot
translation performance of Vanilla NMT and proposed SelectNoise models
with two relatively less lexically similar ELRLs. These two languages belong to
distinct language families, namely Bodo (Sino-Tibetan) and Tamil (Dravidian).
Bodo has Devanagari script, while Tamil employs script conversion to match HRL
(Hindi) script. The results are reported in Table 7.22. It is observed that the perfor-
mance gain is minimal due to the dissimilarity of ELRLs with the corresponding HRL.

Performance for HRLs: Table 7.23 analyzes the performance of the proposed
model for HRLs across both language families. It demonstrates comparable perfor-
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Language Model BLEU chrF

Bodo Vanilla NMT 2.4 18.2
SelectNoise 2.7 18.7

Tamil Vanilla NMT 0.6 11.7
SelectNoise 0.9 13.3

Table 7.22: Zero-shot translation performance of Vanilla NMT vs. SelectNoise on
less related LRLs with HRL (Hindi)

Models Evaluation Metrics
BLEU chrF BLEURT COMET
Hindi HRL

Vanilla NMT 33.4 60.2 0.724 0.868
Random Char Noise 33.0 59.5 0.722 0.865
SelectNoise 34.2 60.5 0.726 0.869

Spanish HRL
Vanilla NMT 21.5 53.5 0.695 0.810
Random Char Noise 21.7 53.0 0.689 0.806
SelectNoise 21.3 53.1 0.689 0.869

Table 7.23: Comparative performance for HRLs across both Indo-Aryan and Romance
families.

mance with the vanilla NMT model for HRLs while boosting the performance of
ELRLs. This highlights the effectiveness of the proposed model in handling both
HRLs and ELRLs.

Sample Translations: Fig. 7.14 presents random sample generations/translations
from Random Character Noise, SelectNoise and Supervised Character Noise in-
jection models. It can be observed that the translation quality for the proposed
SelectNoise model is much better than the baseline models.

7.4.4 Summary

This study presents an effective unsupervised approach, SelectNoise, for cross-
lingual transfer from HRLs to closely related ELRLs through systematic character
noise augmentation. The approach involves extracting selective noise augmentation
candidates using BPE merge operations and edit operations. Furthermore, differ-
ent sampling techniques are explored during the noise augmentation to ensure di-
verse candidate sampling. The model required only a small (1K example) amount of
monolingual data in ELRLs. The proposed model consistently outperformed strong

155



BHO: ट� ंप के हई घोसना, तुक� के रा�� पित रेसेप तइप एड�अन से उनकर फ़ोन पर बातचीत के बाद आइल बा.

ENG: The announcement was made after Trump had a phone conversation with Turkish President Recep Tayyip Erdoğan.

RCN:

UCN:

SCN:

Trump opened up about the phone call with Turkish President Recep Tayyip Erdogan.

After a phone call with Turkish President Recep Tayyip Erdogan, Trump announced his decision.

Trump's announcement came after a phone call with Turkish President Recep Tayyip Erdogan.

HNE:

ENG: 

RCN:

Police said that the body appeared to have been there for about a day.

पुिलस ह बताए िक शव करीब इक िदन से पड़े �ए लगत हे।

The police said the body had been lying on the ground for the past few days.

The police said the bodies had been lying on the road for the past few days.UCN:

The police said the body had been lying for the past several days.SCN:

The UN also intends to set up a fund to relieve the countries affected by the global fear of facing or having a serious impact.ENG: 

A ONU tamén ten previsto crear un fondo para axudar aos países afectados polo quentamento global a afrontar o seu impacto.GLG: 

The UN is also planning to set up a fund to tax years of countries affected by global pole to cope with or have an impact.RCN:

UCN: The UN also intends to set up a fund to relieve the countries affected by the global fear of facing or having a serious impact.

The UN also plans to set up a fund to relieve the countries affected by the global warming to face up to their impact.SCN:

AST:

Several Bishkek residents blamed protesters from the south for the lawlessness.

Munchos cudadanos de Bishkek acusaron a los manifestantes sureños del desorde.

Many people in Bishkek accused the Swiss demonstrators of disorder.

Many people in Bishkek accused southern demonstrators of disorder.

Cubans of Bishkek accused southern protestors of the deorde.

ENG: 

RCN:

UCN:

SCN:

Figure 7.14: Sample translations from various models for ELRLs to English MT direc-
tion. RCN: Random Character Noise injection model, UCN: Unsupervised Character
Noise injection model (i.e., SelectNoise model) and SCN: Supervised Character
Noise injection model.

baselines across 12 ELRLs from two diverse language families in the ELRLs-to-English
MT task. The cumulative gain is 11.3% (chrF) over vanilla NMT. Further, the model
demonstrated comparative performance to a supervised noise augmentation model.

7.5 Conclusion
In this chapter, we have presented two novel modeling techniques to enable and im-
prove zero-shot ELRLs to English machine translation. These models are powered by
a noise augmentation-based approach, acting as a regularizer to enhance the model’s
robustness against lexical variations. This, in turn, results in more effective cross-
lingual transfer from HRL to closely related ELRLs. We have proposed two types of
noise augmentation techniques: (1) The CharSpan model, which introduces random
character-span noise augmentation and requires no additional learning resources for
ELRLs. It is highly scalable. (2) The SelectNoise model applies more system-
atic and linguistically informed character noise augmentation. This model requires
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a small amount of monolingual data (1K) in ELRLs. Both models have different
applicability: if no monolingual data is available, the CharSpan model is preferred,
while if there is a small amount of monolingual data, the SelectNoise model is rec-
ommended. These models represent a significant advancement in the field of machine
translation for ELRLs and are recognized as state-of-the-art models.

7.6 Insights, Limitations and Future Work
Insights: We have conducted several ablation experiments to ensure that the
proposed design choices result in the best performance. Furthermore, our analysis
indicates that the character-span-based model enhances the performance of languages
that are less similar or more distant from HRLs. Additionally, it is important to
select lexically similar languages HRLs in the multilingual training setup. Finally, we
explore a multilingual setup in which multiple HRLs are trained together, resulting
in a performance boost and scale coverage for ELRs. Our model performs equally
well with a vocabulary that is learned with clean data. This provides scalability for
utilizing PLMs, which typically have a fixed vocabulary.

Limitations: The current work addresses only transfer from related LRLs to
English. It still remains to be investigated if noise augmentation is beneficial
for translation from English to extremely low-resource languages. We assume
that the related languages also use the same script or scripts that can be easily
mapped/transliterated to each other. This method might not be effective for transfer
between related languages that are not lexically similar or written in very different
scripts, e.g., Hindi is written in the Devanagari script, while Sindhi is written in the
Perso-Arabic script.

Future Work: In the future, we plan to extend the proposed models to ELRLs
MT task and other NLG tasks. Additionally, we will explore modeling approaches
for ELRLs that are not closely related to HRL or have different scripts. Improved
modeling is needed to transform the language-specific features/aspects.

157



Chapter 8

Conclusion and Future Directions

Though Chapters 3–7 each contain their own conclusions, in this section, I will provide
the overall conclusion and key takeaway to the readers from this thesis.

Natural language generation (NLG) is a well-explored research space where
human-like text is generated given input context. NLG excels in personalization,
automation, consistency, and multilingual versatility, transforming information into
engaging stories. However, the extension of the modern NLG model is limited to
three frequently occurring scenarios: (i) diverse text generation, (ii) text generation
with limited context, and (iii) text generation with limited data/supervision for low-
resource languages. In this thesis, I have focused on advancing Deep Learning based
NLG modeling by mitigating these limitations. The proposed modeling approaches
demonstrate impactful improvement and better suitability in real-life deployment.
The conclusion provides a holistic summary of the thesis, key ideas and suggestions,
and the value of the research below:

8.1 Summary of Contributions
We first address the task of distractor generation, i.e., generating multiple in-

correct options given Multiple-Choice Question (MCQ) reading comprehension, i.e.,
input triplet ⟨ passage, question, and correct answer ⟩. With this objective
in mind, we designed a semantic decoupling and hierarchical multi-decoder-based
model that decouples the input context on the encoder side and employs intercon-
nected multiple decoders to generate diverse distractors. This overcame the limitation
of the existing models and generated distractors that were semantically not similar
to the answer in the context of the question and exhibited lexical diversity among
themselves. We evaluate the model performance with DG [GBL+19] and DG++ (pre-

158



pared by us) datasets with 7 evaluation metrics. Our model outperforms the baseline
models.

Our next model focused on addressing the limited context problem in extending
NLG modeling to the personalized query auto-completions task. It is the task of
generating top completions based on session and prefix inputs. The performance of
existing models was limited for short and unseen prefixes due to a lack of relevant
context within prefixes and in the session. However, the modeling with a retrieval-
argument generation (RAG) framework yielded improved performance, especially for
short and unseen prefixes. In this approach, external context in RAG was obtained
from the traditional Trie model—an aspect not explored previously, and we were the
first to leverage both the session and trie’s knowledge. The evaluation was conducted
with two real click-to-query datasets, namely Bing and AOL. On average, our model
achieved a huge �57% and �14% boost in Mean Reciprocal Rank (MRR) compared to
the popular trie-based lookup and the strong BART-based baseline methods, respec-
tively.

The final research direction in this thesis extended NLG technology to many
LRLs characterized by limited labeled data. Cross-lingual modeling was explored
to transfer supervised signals from HRL to LRLs. However, zero-shot generation in
LRLs presented an additional challenge—the catastrophic forgetting (CF) problem
[XCR+21], where the generated text was either fine-tuning HRL or code-mixed with
HRL and LRLs. To address this, an unsupervised adaptive training-based approach
was proposed, which generates zero-shot, well-formed text in LRLs. This adaptive
training required a small monolingual dataset (11k examples). The effectiveness of
this model was tested across four NLG tasks and two LRLs. In the subsequent model,
these findings were incorporated, with a focus on improving cross-lingual transfer sig-
nals. The improvement was achieved by employing meta-learning (i.e., MAML) and
language clustering, resulting in more uniform cross-lingual supervision transfer to
LRLs, even for less similar LRLs with HRL. The enhanced supervision significantly
boosted the model’s performance. To the best of our knowledge, this was the first
study to apply meta-learning for zero-shot cross-lingual generation. The model un-
derwent evaluation with two NLG tasks, 30 languages, and 5 public datasets, consis-
tently outperforming a strong baseline. Finally, to push the boundaries, we proposed
a modeling approach to enable language technology for extremely LRLs to English
machine translation tasks. This was achieved through noise augmentation based
on two approaches: random char-span noise augmentation (CharSpan) and sys-
tematic linguistically inspired character noise augmentation (SelectNoise). These
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approaches were evaluated across a large number of LRLs spanning different typo-
logically diverse language families. Across all ELRLs and families, the CharSpan
and SelectNoise models achieved gains of 9.46% and 11.31%, respectively, over the
vanilla neural machine translation model [SHB16b].

8.2 Key Ideas and Suggestions
Based on the many failed and limited successful explorations with this thesis, I

summarize several key take-away ideas from the thesis and our suggestions below:

Advancing Frontier of NLG with Constraints: The recurring theme of this
part of the thesis is diverse text generation and text generation with limited context.
The semantic alignment of diverse multiple outputs with each other is a key point
to keep in mind. It is a vulnerable modeling point where more semantic alignment
leads to more lexical similarity as well, and less semantic alignment leads to different
semantics/meanings. On the other hand, the limited context problem is sensitive to
the availability of external knowledge; the relevance and size of external knowledge
directly impact the model performance in the RAG framework. If the curation
of relevant knowledge matches the input context or is in the same domain, it
boosts the performance. However, if the domain shift occurs, it can hamper the
performance. Similarly, too little external context does not contribute to learning, or
too much distracts the learning. Overall, the deep-leaning NLG models are sensitive
to different aspects of modeling attributes and are most often determined empirically.

Low-resource Language Generation:The zero-shot cross-lingual modeling should
be explored more exhaustively; although it is evolving, it has the potential to in-
crease language coverage for NLP technology, benefiting the general population. Ef-
fective cross-lingual transfer requires more sophisticated modeling, specifically for
NLG tasks. I believe the inclusion of different granular aspects like semantic, syn-
tactic, and interlingual can pave the way forward. With the emergence of large
multilingual language models, supervision transfer becomes more reliable, as these
models represent all languages in a common latent representation space, being aware
of the word/phrase/sentence semantics in different languages. There are many di-
alects across the globe, and more are emerging with time; enabling technology for
dialects seems feasible, as supervision transfer is reasonable from closely related re-
sources without the need for large learning resources for dialects. Two such modeling
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approaches we presented are CharSpan and SelectNoise. Overall, with recent
advancements, this is an exciting time to do research in multilingual or low-resource
NLP. With cross-lingual/multilingual/low-resource modeling, replicating the capabil-
ities of Bible fish seems feasible.

8.3 The Value of Research
In this thesis, I have endeavored to extend natural language generation modeling.

However, given the rapid advancement in generative AI, it’s natural to wonder: How
much of this snapshot will be relevant a few years from now?

I believe that the value of research lies not only in whether a particular technique
is used in the future – in fact, almost all research will eventually be outdated and will
pave the way for newer techniques and methods. Research is incremental work; the
progress is made by standing on the shoulders of giants1—building on the foundations
laid by earlier researchers. However, the challenges of diverse text generation and
limited context may persist in various real-life applications. The proposed approaches
are likely to remain effective in some form. The low-resource generation language
holds more value, as the modeling is done in a zero-shot setting, ensuring scalability;
these ideas may persist longer, as modern large language models often exhibit sub-
optimal performance for low-resource languages (LRLs) [AHO+23]. Moreover, the
proposed fine-tuning-based models explored in the thesis provide more controllability
and interpretability compared to the unstructured modern prompting methods. I
hope this thesis will inspire the reader to contribute to the collective understanding,
which will be passed from generation to generation of researchers.

Lastly, ideas from the 80s and 90s, such as backpropagation, active learning,
meta-learning, and many more, have resurfaced and become integral parts of cutting-
edge modern systems. The current wave of large language models may take a tidal
turn; however, some of our proposed techniques will still be there, and they may have
something new to offer.

8.4 Future Directions
Due to the current advancement in generative NLP, the utilization and extension of
ideas from this thesis are exciting. Here, we point to a few future research directions:

1https://en.wikipedia.org/wiki/Standing_on_the_shoulders_of_giants
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• Unified Modeling for Diverse Text Generation: One interesting direction
is to incorporate a diversifying module within the neural network. The diversi-
fying modules should be application-agnostic and consider application-specific
constraints. Furthermore, this should be a plug-and-play module for any neu-
ral network or large language model, enabling the generation of a diverse and
arbitrary number of outputs. We have made a similar effort in [EMKD23] for
diverse headline-generation applications. However, unified exploration is left
for future work.

• Advancing the RAG Modeling: The scenario of limited context holds sub-
stantial relevance across numerous real-life applications, encompassing open-
ended question answering, search queries, and providing relevant citations for
generated output with large language models, among others. The RAG type
of modeling is a promising direction where external knowledge is augmented
from the web, databases, knowledge graphs, or even generated text from LLMs
to overcome limited context issues. The recent advances in RAG modeling
[LPP+20, WWS+22, WWS+22] have pushed the model’s capabilities. External
knowledge can be obtained using well-established approaches in information re-
trieval [Man09]. I believe this direction has to be explored more extensively in
the future.

• Language Technology for Next 7000+ Languages: The research efforts
should be directed toward developing a single, unified, and scalable modeling
framework capable of addressing numerous NLP applications across 7000+ spo-
ken languages. With the emergence of a large language model, the goal seems
tractable. As a starting point, the creation of a large-scale multilingual NLP
benchmark, akin to [HRS+20, AHO+23, CSW+22], should be prioritized, where
the task and language coverage should be on a larger scale. This will help to
push and track the progress of NLP research. Although I believe the model
performance of the benchmark is not a true reflection of modeling capabilities
in real-life applications, still, benchmarking will surely help bridge this gap.

• Modeling Towards Multilinguality: While this thesis delves into adap-
tive training, meta-learning, and noise augmentation for cross-lingual model-
ing, other trending directions are worth exploring: active learning [LWLH13],
prompting [QWDC22], multi-tasking [GDA+21], etc. A more sophisticated
modeling approach could be considered, for instance, learning a transforma-
tion function f from LRL to HRL. f can be viewed as an interlingua/unified

162



space that accounts for linguistic, structural, and other typological features and
facilitates better cross-lingual transfer. Overall, more such directions should be
explored to improve cross-lingual transfer, enhancing performance collectively
for a larger set of low-resource languages and NLP applications.

• Evaluation of Multilingual NLG: Evaluating NLG models is challenging
due to the lack of reliable automated metrics and unbiased human evaluations
[GCS23]. This challenge is more pronounced when dealing with multilingual
NLG models, given the scarcity of linguistic tools and resources across lan-
guages. This underscores a critical research area that requires immediate at-
tention and innovative solutions.

• Evaluation without Reference: Creating an evaluation benchmark for all
languages and NLP tasks may not be feasible as new NLP tasks are frequently
formulated. In light of this, there should be an effort to develop modeling
techniques that allow evaluation without the need for gold reference evaluation
data. This approach is explored in the machine translation task, which covers
1000 languages [SBF+22], providing a foundation for future research to explore
similar directions.
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